高阶导数zsbd

高阶导数

前置
  1. 奇偶函数求导奇偶交错

第一种

f ( x ) f(x) f(x)为偶函数 f ( n + 1 ) ( 0 ) = 0 f^{(n+1)}(0)=0 f(n+1)(0)=0

第二种

一般的分数经过拆分之后都能化为此类
f ( x ) = 1 a x + b f ( n ) ( x ) = ( − 1 ) n n ! ⋅ a n ( a x + b ) n + 1 f(x)=\frac{1}{ax+b} \\ f^{(n)}(x)=(-1)^n\frac{n!\cdot a^n}{(ax+b)^{n+1}} f(x)=ax+b1f(n)(x)=(1)n(ax+b)n+1n!an
ln型的函数
f ( x ) = ln ⁡ ( a x + b ) f ′ ( x ) = a a x + b f ( n ) ( x ) = ( − 1 ) n − 1 ( n − 1 ) ! ⋅ a n ( a x + b ) n f(x)=\ln (ax+b) \\ f'(x)=\frac{a}{ax+b} \\ f^{(n)}(x)=(-1)^{n-1}\frac{(n-1)!\cdot a^n}{(ax+b)^{n}} f(x)=ln(ax+b)f(x)=ax+baf(n)(x)=(1)n1(ax+b)n(n1)!an

第三种

利用 sin ⁡ ( x + π 2 ) = cos ⁡ x \displaystyle\sin(x+\frac{\pi}{2})=\cos x sin(x+2π)=cosx来变形
[ sin ⁡ ( a x + b ) ] ( n ) = a n sin ⁡ ( a x + b + n π 2 ) [ cos ⁡ ( a x + b ) ] ( n ) = a n cos ⁡ ( a x + b + n π 2 ) \large [\sin(ax+b)]^{{(n)}}=a^n\sin(ax+b+\frac{n\pi}{2}) \\ \large[\cos(ax+b)]^{{(n)}}=a^n\cos(ax+b+\frac{n\pi}{2}) [sin(ax+b)](n)=ansin(ax+b+2)[cos(ax+b)](n)=ancos(ax+b+2)

第四种

莱布尼兹公式
( u v ) ( n ) = C n 0 u ( n ) v + C n 1 u ( n − 1 ) v ( 1 ) + C n 2 u ( n − 2 ) v 2 + ⋯ + C n n u v ( n ) \large (uv)^{(n)}=C_{n}^0u^{(n)}v^{}+C_{n}^1u^{(n-1)}v^{(1)}+C_{n}^2u^{(n-2)}v^{2}+\cdots+C_{n}^nu^{}v^{(n)} (uv)(n)=Cn0u(n)v+Cn1u(n1)v(1)+Cn2u(n2)v2++Cnnuv(n)

第五种

泰勒公式,适用于在某点展开
f ( x 0 ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) ( x − x 0 ) 2 2 ! + ⋯ + f ( n ) ( x 0 ) ( x − x 0 ) n n ! \Large f(x_0)=f(x_0)+f'(x_0)(x-x_0)+f''(x_0)\frac{(x-x_0)^2}{2!} +\cdots+f^{(n)}(x_0)\frac{(x-x_0)^n}{n!} f(x0)=f(x0)+f(x0)(xx0)+f′′(x0)2!(xx0)2++f(n)(x0)n!(xx0)n

f ( n ) ( x 0 ) = ( x n 的系数 ) ⋅ n ! \Large f^{(n)}(x_0)=(x^n的系数)\cdot n! f(n)(x0)=(xn的系数)n!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值