磁矢位的引入 工程电磁场 P19

该文深入探讨了磁场的数学表述,介绍了磁矢位的概念,并通过泊松方程阐述了确定磁场的条件。文章重点讨论了在均匀媒质中磁矢位的散度与旋度的关系,以及在不同媒质交界处的衔接条件。同时,提到了在直角坐标系中求解磁场分布的方法,特别分析了当电流分布沿特定方向时的特殊情况。
摘要由CSDN通过智能技术生成

首先我们有恒定磁场的两个方程

\nabla \times \vec H=\vec J

\nabla \cdot \vec B=0

为了更方便解决问题,我们引入磁矢位\vec A

\vec B=\nabla \times \vec A

由此我们可以得到\nabla \cdot (\nabla \times \vec A)=0

我们可以得到\nabla \cdot (\frac{1}{\mu}\nabla \times \vec A)=\vec J

我们要确定A,则既需要知道旋度,我们还需要知道散度

如果是均匀媒质,\mu是常数

我们可以得到\nabla \times \nabla \times \vec A=\mu \vec J

我们进行展开可以得到\nabla(\nabla \cdot \vec A)-\nabla^2 \vec A=\mu \vec J

我们要知道A,必须要知道A的散度,如果我们知道散度,那么泊松方程就可以简化

那么场该怎么确定,这首先就是一个问题

\vec A^{\prime}=\vec A+\nabla \phi

通过数学证明可以得到,A的散度不影响B的计算,所以为了简化方程,我们令\nabla \cdot \vec A=0

\nabla^2 \vec A=-\mu \vec J

我们在直角坐标系里面进行分解,

\vec J=\vec J_{x}\vec e_x+\vec J_{y}\vec e_y+\vec J_{z}\vec e_z

\vec A=\vec A_{x}\vec e_x+\vec A_{y}\vec e_y+\vec A_{z}\vec e_z

我们可以得到

\nabla^2 A_x \vec e_x+\nabla^2 A_x \vec e_x+\nabla^2 A_x \vec e_x= -\mu J_x \vec e_x-\mu J_y \vec e_y-\mu J_z \vec e_z

对应分量需要相等,分解为三个标量的泊松方程

我们得到三个方程

\left\{ \begin{aligned} \nabla ^2 A_x =-\mu J_x \\ \nabla ^2 A_y =-\mu J_y \\ \nabla ^2 A_z =-\mu J_z \\ \end{aligned} \right.

如果我们给定的电流分布沿着x方向没有分量,那么产生的A里面就没有x的分量,但是这个需要被证明

因为\nabla ^2 \varphi =-\frac{\rho}{\varepsilon},\varphi(\vec r)=\frac{1}{4 \pi \varepsilon}\int_{v} \frac{\rho(\vec r^{\prime})d v^{\prime}}{R}

同理我们可以推得,A_x(\vec r)=\frac{\mu}{4 \pi} \int_{V} \frac{J_x(\vec r^{\prime})dv^{\prime}}{R}

我们得到有限大电流分布,在无限大各项均匀介质钟产生的\vec A

\vec A (\vec r)=\frac{\mu}{4 \pi} \int_{V} \frac{\vec J(\vec r^{\prime})dv^{\prime}}{R }

磁通量\Phi_{m}=\int_{S} \vec B \cdot d\vec S=\int_{S} (\nabla \times\vec A)\cdot d\vec S

因此我们可以得到\Phi_m=\oint_{l} \vec A\cdot d\vec l


磁矢位的边值问题

\left\{ \begin{aligned} \nabla^2 \vec A=\mu \vec J \\ A|_{s}=\vec K \end{aligned} \right.

第一类边值问题

如果有两种或媒质,\mu_1,\mu_2

 原先的两个边界条件,我们转换成磁矢位表示

从数学上来看,散度为0,表示法向量不变

\vec A_{2n}=\vec A_{1n}

切向方向也应该有分量

\vec A_{2t}=\vec A_{1t}

由此我们论证了\vec A_2=\vec A_1

还有另一个关系式\frac{1}{\mu_2}\nabla \times \vec A_2-\frac{1}{\mu_1}\nabla \times \vec A_1=K

我们把这两个方程称为用A表示的衔接条件

我们把空间分为n个子区域,每一个子区域都满足方程,任意两个相邻的媒质,我们再加上衔接条件,就可以解答

 


 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值