首先我们有恒定磁场的两个方程
为了更方便解决问题,我们引入磁矢位
由此我们可以得到
我们可以得到
我们要确定A,则既需要知道旋度,我们还需要知道散度
如果是均匀媒质,是常数
我们可以得到
我们进行展开可以得到
我们要知道A,必须要知道A的散度,如果我们知道散度,那么泊松方程就可以简化
那么场该怎么确定,这首先就是一个问题
通过数学证明可以得到,A的散度不影响B的计算,所以为了简化方程,我们令
我们在直角坐标系里面进行分解,
我们可以得到
对应分量需要相等,分解为三个标量的泊松方程
我们得到三个方程
如果我们给定的电流分布沿着x方向没有分量,那么产生的A里面就没有x的分量,但是这个需要被证明
因为,
同理我们可以推得,
我们得到有限大电流分布,在无限大各项均匀介质钟产生的
磁通量
因此我们可以得到
磁矢位的边值问题
第一类边值问题
如果有两种或媒质,
原先的两个边界条件,我们转换成磁矢位表示
从数学上来看,散度为0,表示法向量不变
切向方向也应该有分量
由此我们论证了
还有另一个关系式
我们把这两个方程称为用A表示的衔接条件
我们把空间分为n个子区域,每一个子区域都满足方程,任意两个相邻的媒质,我们再加上衔接条件,就可以解答