研究生阶段 | 偷师学艺来的三小时速成《数值分析》

文章目录

需要例子进行不

一、前言

有时候学了下之后,所谓的创新点,归根结底,还是对于数学领域的认知。有时候,你不清楚数学领域发展到了什么程度,这是万万不行的。我前几天问了我最优化老师一个问题。例子是这样的,目标函数是我想考高分,A老师给的考试范围可信度是90%,B老师给的考试范围是70%。那么此时把概率的东西加入到了最优化里面,那么这个问题,理论上肯定有人研究。但是我不知道,应该怎么去找。因此,知道一些名词,知道一些东西是很有必要的。就像,数模曾经第一次上课跟我说的,模型就是枪,你不用理解具体的原理,你只用知道如何上弹,如何扣动扳机就行。最重要的是,你要有“枪”这个概念。

所以要从,需要什么数据,能解决什么问题,每一种方法的优缺点是什么,适用在什么地方,多个角度出发

二、数值分析大纲

2.1 第1章绪论(√)

2.1.1 有效数字

解决的是:限定了相对误差的上限,从而算出,结果需要保留几位有效数字

2.1.2 算法设计若干准则

  1. 选择的算法稳定——小扰动,不影响
  2. 避免相近的数相减
  3. 除数不能远小于被除数
  4. 防止大数吃小数
  5. 简化计算——项数多且次幂高–秦九韶算法

2.1.3 数值运算的误差(函数运算的误差估计)

算术运算的误差估计:已知两个数分别的误差、经过一系列的四则运算,误差会达到多少
函数运算的误差估计:利用微分中值,通过已知自变量误差,从而算得函数误差(微积分)

2.2 第2章 插值法(√)

2.2.1 什么是插值

插值是数值分析中的一种方法,用于通过已知的数据点来估计或预测未知的数据点。具体来说,给定一组离散的数据点,插值的目标是找到一个函数,该函数通过所有这些数据点,并且可以用来估计这些点之间的值

2.2.2 拉格朗日插值

2.2.2.1 定义
拉格朗日插值是一种多项式插值方法,用于通过一组已知的数据点来构造一个多项式。给定 (n+1) 个数据点 ( ( x 0 , y 0 ) , ( x 1 , y 1 ) , … , ( x n , y n ) ) ((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)) ((x0,y0),(x1,y1),,(xn,yn)),拉格朗日插值多项式 (P(x)) 可以表示为:
[ P ( x ) = ∑ i = 0 n y i L i ( x ) ] [ P(x) = \sum_{i=0}^{n} y_i L_i(x) ] [P(x)=i=0nyiLi(x)]
其中 ( L i ( x ) (L_i(x) (Li(x)) 是拉格朗日基函数,定义为:
[ L i ( x ) = ∏ 0 ≤ j ≤ n j ≠ i x − x j x i − x j ] [ L_i(x) = \prod_{\substack{0 \leq j \leq n \\ j \neq i}} \frac{x - x_j}{x_i - x_j} ] [Li(x)=0jnj=ixixjxxj]
拉格朗日插值的优点是形式简单,但当增加数据点时,需要重新计算整个多项式,这可能导致数值不稳定性(如龙格现象).
2.2.2.2 适用情况
数据点较少:当数据点数量较少时,拉格朗日插值可以有效地构造一个多项式来通过这些点。
数据点分布较均匀:如果数据点分布较为均匀,拉格朗日插值能够较好地逼近原始函数。
需要简单实现的场合:由于其公式结构简单,拉格朗日插值易于实现,适用于需要快速实现插值的场合。

2.2.2.3 优缺点

优点
简单易懂:拉格朗日插值公式结构简单,容易理解和实现。
精度较高:在节点较密集的情况下,能够准确地逼近原始函数。
灵活性强:可以应用于各种类型的数据集,包括不均匀分布的数据。

缺点
计算量大:当插值点较多时,计算量会显著增加,导致效率低下。
数值不稳定性:在插值点较多时,特别是数据点分布不均匀时,容易出现数值不稳定现象,如龙格现象。
对数据点变化敏感:每次增加或减少一个数据点时,需要重新计算所有基函数,导致计算过程繁琐。
2.2.2.4 在深度学习领域的应用
拉格朗日插值在深度学习中的应用相对较少,但可以在一些特定场景中发挥作用:

数据预处理:用于填补缺失数据或平滑噪声数据,以便更好地训练深度学习模型。
模型插值:在某些情况下,可以用于在已知模型参数之间进行插值,以生成新的模型参数组合。
数值优化:在某些优化问题中,可以用于构造目标函数的近似多项式,从而简化优化过程。

2.2.2.5 总结
在数据较少、密集的情况下表现比较好,数据不能太大。而且计算过程很大。很少使用。
但是对于数据预处理方面有比较好的使用

2.2.3 差商及其性质

差商是用于构造牛顿插值多项式的工具。对于函数 (f(x)) 和一组节点 ( x 0 , x 1 , … , x n ) (x_0, x_1, \ldots, x_n) (x0,x1,,xn),差商定义为:

  • 一阶差商: [ f [ x i , x i + 1 ] = f ( x i + 1 ) − f ( x i ) x i + 1 − x i ] [ f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} ] [f[xi,xi+1]=xi+1xif(xi+1)f(xi)]
  • 高阶差商: [ f [ x i , x i + 1 , … , x i + k ] = f [ x i + 1 , … , x i + k ] − f [ x i , … , x i + k − 1 ] x i + k − x i ] [ f[x_i, x_{i+1}, \ldots, x_{i+k}] = \frac{f[x_{i+1}, \ldots, x_{i+k}] - f[x_i, \ldots, x_{i+k-1}]}{x_{i+k} - x_i} ] [f[xi,xi+1,,xi+k]=xi+kxif[xi+1,,xi+k]f[xi,,xi+k1]]
    差商的性质包括对称性(与节点顺序无关)和递归性(高阶差商可以用低阶差商表示).

高阶阶差商需要上一级差商的结果。

2.2.4 牛顿插值

牛顿插值是另一种多项式插值方法,使用差商来构造插值多项式。牛顿插值多项式可以表示为:
[ P ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) + ⋯   ] [ P(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots ] [P(x)=f(x0)+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)+]
牛顿插值的优点是当增加数据点时,只需添加新的项而不需要重新计算整个多项式,这使得它在某些情况下比拉格朗日插值更高效.

优点是增加数据点的时候,不需要重新计算整个式子,但是如果数据量过多,计算量很庞大。深度学习很少用

2.2.5 插值余项和证明

对于多项式插值,插值余项(或误差)表示插值多项式与真实函数之间的差异。对于拉格朗日插值,余项可以表示为:
[ R ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∏ i = 0 n ( x − x i ) ] [ R(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i) ] [R(x)=(n+1)!f(n+1)(ξ)i=0n(xxi)]
其中 (\xi) 是区间内的某个点。余项的证明通常涉及罗尔定理和拉格朗日中值定理.
在这里插入图片描述

2.2.6 插值基函数

插值基函数是用于构造插值多项式的函数。对于拉格朗日插值,基函数是拉格朗日基函数 (L_i(x));对于牛顿插值,基函数是由差商构造的多项式项.
在这里插入图片描述

2.2.7 Hermite 插值

Hermite 插值是一种插值方法,不仅要求插值多项式通过给定的数据点,还要求其导数在某些点上与给定的导数值相匹配。给定 ( n + 1 ) (n+1) (n+1)个数据点 ( ( x 0 , y 0 , y 0 ′ ) , ( x 1 , y 1 , y 1 ′ ) , … , ( x n , y n , y n ′ ) ) ((x_0, y_0, y'_0), (x_1, y_1, y'_1), \ldots, (x_n, y_n, y'_n)) ((x0,y0,y0),(x1,y1,y1),,(xn,yn,yn)),Hermite 插值多项式是一个 (2n+1) 次的多项式,满足: [ P ( x i ) = y i , P ′ ( x i ) = y i ′ ] [ P(x_i) = y_i, \quad P'(x_i) = y'_i ] [P(xi)=yi,P(xi)=yi]
Hermite 插值适用于需要同时匹配函数值和导数值的情况.
Hermite插值,还利用了导数信息,效果更好

2.2.8 分段低次插值

分段低次插值是一种将区间分成若干小段,然后在每一段上使用低次多项式进行插值的方法。常见的分段低次插值包括分段线性插值和分段二次插值。分段线性插值在每一段上使用线性多项式,而分段二次插值在每一段上使用二次多项式。分段低次插值的优点是计算简单,且在某些情况下可以避免多项式插值的不稳定性。

可以避免龙格现象,即在数据点的两端出现剧烈震荡。分段低次插值通过在每个小区间上使用低次多项式来避免这种现象

2.2.9 三次样条插值(概念)

三次样条插值是一种分段插值方法,使用三次多项式在每一段上进行插值,并且要求在节点处的函数值、一阶导数和二阶导数都连续。三次样条插值具有良好的平滑性和稳定性,常用于工程和科学计算中。它通过求解一个线性方程组来确定样条函数的系数,使得整个插值函数在区间上具有良好的平滑性.

2.3 第3章 函数逼近(重点)

2.3.1 什么是函数逼近

函数逼近是数学和数值分析中的一个概念,它指的是用一个函数来近似表示另一个函数的过程。在实际应用中,我们经常需要对复杂的函数进行简化,以便于计算和分析。函数逼近可以帮助我们找到一个更简单、更易于处理的函数,来近似表示原始的复杂函数。
在深度学习中,函数逼近的概念被广泛应用于模型的训练和优化。例如,神经网络可以看作是通过学习来逼近复杂函数的工具。正交多项式系、范数、内积等概念在深度学习的理论分析和算法设计中也起着重要的作用。

2.3.2 正交多项式系——内积为0即为正交

正交多项式系是一组在某个区间上相对于某个权重函数正交的多项式。常见的正交多项式系包括:

  • 勒让德多项式:在区间 ([-1, 1]) 上相对于权重函数 ( w ( x ) = 1 ) (w(x) = 1) (w(x)=1) 正交。
  • 切比雪夫多项式:在区间 ([-1, 1]) 上相对于权重函数 ( w ( x ) = 1 1 − x 2 ) (w(x) = \frac{1}{\sqrt{1 - x^2}}) (w(x)=1x2 1) 正交。
  • 拉格朗日多项式:在区间 ( [ 0 , ∞ ) ) ([0, \infty)) ([0,)) 上相对于权重函数 ( w ( x ) = e − x ) (w(x) = e^{-x}) (w(x)=ex) 正交。
  • 埃尔米特多项式:在区间 ( ( − ∞ , ∞ ) ) ((-\infty, \infty)) ((,)) 上相对于权重函数 ( w ( x ) = e − x 2 ) (w(x) = e^{-x^2}) (w(x)=ex2) 正交。

正交多项式系在函数逼近、数值积分和微分方程求解等领域有广泛的应用。

2.3.3 范数

范数是度量向量或函数大小的一种方法。在函数空间中,常见的范数包括:

  • (L_1) 范数 ( ∥ f ∥ 1 = ∫ a b ∣ f ( x ) ∣   d x ) (\|f\|_1 = \int_a^b |f(x)| \, dx) (f1=abf(x)dx)
  • (L_2) 范数 ( ∥ f ∥ 2 = ( ∫ a b ∣ f ( x ) ∣ 2   d x ) 1 / 2 ) (\|f\|_2 = \left( \int_a^b |f(x)|^2 \, dx \right)^{1/2}) (f2=(abf(x)2dx)1/2)
  • (L_\infty) 范数 ( ∥ f ∥ ∞ = max ⁡ x ∈ [ a , b ] ∣ f ( x ) ∣ ) (\|f\|_\infty = \max_{x \in [a, b]} |f(x)|) (f=maxx[a,b]f(x))

不同的范数适用于不同的逼近问题。

用最优化老师的话来说,不同的范数就像不同的规则,不同的规则选出不一样的人才

2.3.4 内积

内积是度量两个向量或函数之间相似程度的一种方法。在函数空间中,内积通常定义为:
[ ⟨ f , g ⟩ = ∫ a b f ( x ) g ( x ) w ( x )   d x ] [ \langle f, g \rangle = \int_a^b f(x) g(x) w(x) \, dx ] [⟨f,g=abf(x)g(x)w(x)dx]
其中 (w(x)) 是权重函数。

2.3.5 最佳一致逼近(用n次多项式逼近n+1次多项式的情形)

最佳一致逼近是指在给定的函数空间中,找到一个函数,使得它与目标函数之间的最大误差最小。在多项式逼近中,最佳一致逼近通常是指用 (n) 次多项式逼近 (n+1) 次多项式或更高次的多项式。切比雪夫多项式在最佳一致逼近中具有重要应用。

一系列的残差最大值达到最小

2.3.6 最佳平方逼近——从积分的角度出发(2范数的平方)

最佳平方逼近是指在给定的函数空间中,找到一个函数,使得它与目标函数之间的平方误差最小。在多项式逼近中,最佳平方逼近通常是指用 (n) 次多项式逼近 (n+1) 次多项式或更高次的多项式。正交多项式系在最佳平方逼近中具有重要应用。

残差平方相加取最小

2.3.7 曲线拟合的最小二乘法(包含可化为线性拟合的情况)

最小二乘法是一种常用的曲线拟合方法,它通过最小化残差的平方和来找到最佳的拟合曲线。对于一组数据点 ((x_i, y_i)),最小二乘法可以找到一个函数 (f(x)),使得:
[ ∑ i = 1 n ( y i − f ( x i ) ) 2 ] [ \sum_{i=1}^n (y_i - f(x_i))^2 ] [i=1n(yif(xi))2]
最小。最小二乘法可以用于线性拟合和非线性拟合,其中线性拟合是最简单的情况。

2.4 第4章 数值积分与数值微分

2.4.1 数值积分

数值积分是计算定积分的一种方法,用于求解积分 ( ∫ a b f ( x )   d x ) (\int_a^b f(x) \, dx) (abf(x)dx),特别是当被积函数复杂或无法求出原函数时。以下是几种常见的数值积分方法:

2.4.1.0 代数精度——基石
  • 定义:代数精度是指数值积分公式能够准确计算的最高次多项式的次数。例如,如果一个数值积分公式能够准确计算所有次数不超过 (n) 的多项式的积分,则称其具有 (n) 阶代数精度。
  • 意义:代数精度越高,数值积分公式的精度通常越好,但计算复杂度也可能增加。
  • 因为幂函数好积分,所以幂函数逼近原函数。令f(x)等于一系列的幂函数(1,x,x2,……xm),分别带入左右两边,当第一次出现不等时,则上一次的幂函数的次方就是代数精度

  • 在这里插入图片描述
2.4.1.1 插值型求积公式
  • 基本思想:通过在积分区间内选择若干个节点,构造一个插值多项式来近似被积函数,然后计算该插值多项式的积分。
  • 例子:牛顿-柯特斯公式就是一种插值型求积公式。
  • 用一系列的函数值乘以系数,逼近原函数。多少代数精度,就有多少个函数值

2.4.1.2 牛顿-柯特斯公式
  • 定义:牛顿-柯特斯公式是基于等间距节点的插值型求积公式,包括梯形公式、辛普森公式等。
  • 梯形公式:使用两个节点,代数精度为 1,公式为(上底+下底的和乘高除以2) ( ∫ a b f ( x )   d x ≈ b − a 2 [ f ( a ) + f ( b ) ] ) (\int_a^b f(x) \, dx \approx \frac{b-a}{2} [f(a) + f(b)]) (abf(x)dx2ba[f(a)+f(b)])
  • 辛普森公式:使用三个节点,代数精度为 3,公式为(对中间值权重为4,两端为1) ( ∫ a b f ( x )   d x ≈ b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] ) (\int_a^b f(x) \, dx \approx \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)]) (abf(x)dx6ba[f(a)+4f(2a+b)+f(b)])
  • 柯特斯系数:在计算求积系数Ak时的等价符号;牛顿法:用一系列的系数和函数值表示原函数。不同的等分原则:两点公式-一等分-梯形公式;三点公式-二等分-辛普森公式;五点公式-四等分-科特斯公式(都有相应公式)

2.4.1.3 复合求积
  • 基本思想将积分区间分成若干个子区间,然后在每个子区间上应用简单的求积公式,最后将结果累加。
  • 复合梯形公式:将梯形公式应用于每个子区间,公式为 ( ∫ a b f ( x )   d x ≈ b − a 2 n [ f ( a ) + 2 ∑ i = 1 n − 1 f ( x i ) + f ( b ) ] ) (\int_a^b f(x) \, dx \approx \frac{b-a}{2n} [f(a) + 2\sum_{i=1}^{n-1} f(x_i) + f(b)]) (abf(x)dx2nba[f(a)+2i=1n1f(xi)+f(b)]),其中 ( x i = a + i b − a n ) (x_i = a + i\frac{b-a}{n}) (xi=a+inba)
  • 复合辛普森公式:将辛普森公式应用于每个子区间。
  • 分段了,更精细了

2.4.1.4 龙贝格算法——牛逼
  • 基本思想:通过逐步提高求积公式的代数精度来加速数值积分的收敛速度。用于计算定积分的数值近似值。它是基于复合梯形公式的推广,通过递归和外推的方法逐步提高积分的精度
  • 过程:从低阶求积公式开始,逐步使用外推公式提高精度,直到满足误差要求。

集合了梯形公式、辛普森公式、科特斯公式的

原理
基于复合梯形公式:龙贝格算法首先使用复合梯形公式计算出一组初始积分值。复合梯形公式是一种简单而有效的数值积分方法,通过将积分区间分割成多个小区间,并在每个小区间上使用梯形公式来近似计算积分。
理查森外推法:龙贝格算法的核心在于理查森外推法。该方法通过比较不同步长的近似值来估计误差,并通过加权平均的方式提高积分的精确度。
步骤

  1. 初始化:选择一个初始步长h ,计算复合梯形公式的初始近似值 T 0 T_0 T0
  2. 递归计算:将积分区间二分,计算新的步长h/2 ,并使用复合梯形公式计算新的近似值 T 1 T_1 T1
  3. 加权平均:使用理查森外推公式,将 T 0 T_0 T0 T 1 T_1 T1 进行加权平均,得到更高精度的近似值 T 2 T_2 T2
  4. 迭代:重复步骤 2 和 3,直到满足预设的精度要求。

应用
科学计算:龙贝格算法广泛应用于物理学、工程学、经济学等领域,用于解决复杂的数值积分问题。
工程应用:在工程领域,龙贝格算法可以用于计算复杂的物理模型和系统的积分,如在流体力学和热力学中的应用。
金融计算:在金融领域,龙贝格算法可以用于计算期权定价模型中的积分。
优点
高精度:通过递推和外推的方法,龙贝格算法能够显著提高积分的精度
高效性:与直接计算高阶梯形公式相比,龙贝格算法的计算量较小,效率更高。
自适应性:能够根据积分区间的变化自适应地调整分段求积的步长。
缺点
复杂性:递推公式较为复杂,需要理解和掌握多个系数的含义和作用。
对奇异性敏感:对于函数奇异性较强的情况,效果可能不佳。

2.4.1.5 高斯-勒让德求积

勒让德——只有在[-1,1]上积分,不然用转换公式,适配到这个区间。勒让德就是求出xk
在这里插入图片描述

  • 定义:高斯-勒让德求积是一种高精度的数值积分方法,使用非等间距节点,具有较高的代数精度。
  • 特点:节点和权重系数由勒让德多项式的根和相关公式确定,具有较高的代数精度和计算效率。

节点和权重的选择:高斯-勒让德求积的节点是勒让德多项式的零点,这些节点被称为高斯点。权重系数是根据这些节点计算得出的。
正交多项式:勒让德多项式是一组在区间 上相对于权重函数 正交的多项式。高斯点的选择使得求积公式具有高代数精度。
步骤
选择节点和权重:根据所需的精度选择合适的高斯点和对应的权重系数。
变换积分区间:如果积分区间不是 ,需要将积分区间变换到 上。
计算积分:将被积函数在高斯点上的值与对应的权重系数相乘,并求和,得到积分的近似值。
优点
高精度:高斯-勒让德求积具有很高的代数精度,通常可以达到 阶精度。
高效性:由于节点和权重的选择经过优化,可以在较少的节点数下获得较高的精度。
广泛适用:适用于各种光滑函数的积分计算。
缺点
节点和权重的计算复杂:需要预先计算或查找节点和权重,这在实际应用中可能较为复杂。
对奇异性敏感:对于函数在某些点存在奇异性或不连续的情况,精度可能会受到影响。
应用
科学计算:广泛应用于物理学、工程学、经济学等领域,用于解决复杂的数值积分问题。
数值分析:在数值分析中用于求解各种积分问题,特别是在需要高精度的情况下

2.4.2 数值微分

数值微分是计算函数导数的一种方法,用于求解 (f’(x)),特别是当函数表达式复杂或无法求出导数时。以下是几种常见的数值微分方法:

2.4.2.1 两点公式
  • 前向差分公式 ( f ′ ( x ) ≈ f ( x + h ) − f ( x ) h ) (f'(x) \approx \frac{f(x+h) - f(x)}{h}) (f(x)hf(x+h)f(x)),误差为 (O(h))。
  • 后向差分公式 ( f ′ ( x ) ≈ f ( x ) − f ( x − h ) h ) (f'(x) \approx \frac{f(x) - f(x-h)}{h}) (f(x)hf(x)f(xh)),误差为 (O(h))。
2.4.2.1 三点公式
  • 中心差分公式 ( f ′ ( x ) ≈ f ( x + h ) − f ( x − h ) 2 h ) (f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}) (f(x)2hf(x+h)f(xh)),误差为 (O(h2))。
  • 中点公式:用于计算二阶导数, ( f ′ ′ ( x ) ≈ f ( x + h ) − 2 f ( x ) + f ( x − h ) h 2 ) (f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}) (f′′(x)h2f(x+h)2f(x)+f(xh)),误差为 ( O ( h 2 ) ) (O(h^2)) (O(h2))
2.4.3.1 深度学习

优化算法:在深度学习中,优化算法如梯度下降法需要计算目标函数的导数数值微分可以用于近似计算这些导数尤其是在目标函数复杂或不可导的情况下
模型训练:在训练过程中,数值积分可以用于计算模型的损失函数的积分形式,尤其是在涉及概率分布的模型中
数据预处理:数值分析中的方法,如最小二乘法,可以用于数据拟合和去噪,从而提高模型训练的数据质量。

2.4.3.2 三维重建

曲面重建:在三维重建中,数值积分可以用于计算曲面的面积或体积等几何属性。这对于生成精确的三维模型非常重要。
深度图处理:在处理深度图时,数值微分可以用于边缘检测和曲率估计,从而帮助识别和重建物体的形状。
点云处理:在点云数据的处理中,数值积分和微分可以用于平滑处理和特征提取,以提高重建的精度和质量。

2.5 第5章 非线性方程(组)的数值解法

二分法误差估计

根据精度,判断二分的几次

有根区间的求法

零点定理、画图法

不动点迭代

构造x的迭代等式;
在这里插入图片描述

收敛阶与收敛性定理

收敛定理

全局:1.迭代公式的值在一个区间内;迭代公式求导之后的绝对值小于1
在这里插入图片描述
在这里插入图片描述
局部:只有第二条

收敛阶:看最优化方法博客

牛顿法

找一个点的切线,该线与x轴交点对应于的点,为下一次迭代起始点;依次往复

弦截法

用当前和前一次的两次迭代点确定的直线,与x轴的交点,为下一次的迭代点。

2.6 第6章 解线性方程组的直接法

就是把系数矩阵A拆成特定矩阵组合(比如:上三角-U(up)、下三角-L(low)、对角矩阵-D(dui))

高斯消元法、矩阵的 LU 分解、矩阵的LDLT、L LT分解、追赶法、向量范数、矩阵范数、谱半径、矩阵条件数

2.7 第7章 解线性方程组的迭代法

三种表达形式:分量形式、缩写形式、矩阵形式

雅可比迭代

把对角线元素放等式左边,其余右边。此为迭代公式

在这里插入图片描述
在这里插入图片描述

G-S迭代——高斯-赛德尔迭代

直接用到当前的变量结果 在这里插入图片描述

SOR 迭代

版权:最抽象的人——yss

在这里插入图片描述

收敛定理

函数就是,导数的绝对值小于1为收敛
矩阵就是,任何一范数小于1
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
充要条件:迭代矩阵的谱半径小于1

对角占优:每一行的对角元素的绝对值都大于该行非对角元素绝对值之和。
如果系数矩阵,若满足,则雅可比迭代、G-S迭代——高斯-赛德尔迭代均是收敛,反之,则继续迭代。
弱对角:满足一行即可

2.8 第8章 矩阵特征值与特征向量的计算

圆盘定理

判断特征值的取值范围

瑞利商(Rayleigh)

判断矩阵A:介于最大特征值和最小特征值之间

幂法

计算机里面计算特征值特征向量

规范化幂法

版权:我最最可爱的公主殿下——yss
在这里插入图片描述

规范化反幂法

版权:我最最可爱的公主殿下——yss
在这里插入图片描述

2.9 第9章 常微分方程初值问题的数值解法

欧拉法

版权:我最最可爱的公主殿下——yss
在这里插入图片描述

在这里插入图片描述

后退欧拉法

版权:我最最可爱的公主殿下——yss
yn+1=yn+h*f(xn+1,yn+1)

梯形法

yn+1=yn+0.5h*[f(xn,yn)+f(xn+1,yn+1)]

改进欧拉法

梯形法与欧拉法结合

yn+1yiba=yn+hf(xn,yn)
yn+1=yn+0.5h
[f(xn,yn)+f(xn+1,yn+1yiba)]

局部截断误差与阶

在这里插入图片描述
在这里插入图片描述

三、其他

3.1 收敛和发散的粗浅解释

越高阶,迭代速度越快,找到那个函数值,迭代次数越高,却发现不能精确到那个点迭代次数发生波动震荡或者这就是发散,如果阶数过高,可能就会发生震荡现象

3.2 什么是权重函数的正交?

内积为0,即为正交

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周末不下雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值