一文极速回顾研究生课程《数值分析》重点

数值分析这门课的本质就是用离散的已知点去估计整体,就是由黑盒子产生的结果去估计这个黑盒子。在数学里这个黑盒子就是一个函数嘛,这门课会介绍许多方法去利用离散点最大化地逼近这个函数,甚至它的导数、积分,甚至微分方程的解。
衡量的标准当然就是估计值与真实值的误差,所以这门课里误差的计算很重要,交给matlab就行了。
下面讲到的知识点都是承上启下串联在一起的,可顺滑食用


 

泰勒展开

泰勒公式真的是学哪个数学分支都逃不掉,必须掌握的基础!在这门课很多公式都由泰勒公式推出!但它并不是数值分析关注的重点。

拉格朗日插值

这是数值分析中最简单也是最重要的知识点,因为泰勒展开只关注于一点,如果从黑盒子中出来几个数据,而我们只能利用一点去估计整体,想想都不对劲,实际上也是如此,误差会非常大。这就引出了拉格朗日插值,n阶的估计就会用到n+1个点。比如: P 1 ( x ) = x − x 1 x 0 − x 1 f ( x 0 ) + x − x 0 x 1 − x 0 f ( x 1 ) + f ( 2 ) ( ξ ) 2 ! ( x − x 0 ) ( x − x 1 ) P_1(x) = \frac{x-x_1}{x_0-x_1}f(x_0) + \frac{x-x_0}{x_1-x_0}f(x_1) + \frac{f^{(2)}(\xi )}{2!}(x-x_0)(x-x_1) P1(x)=x0x1xx1f(x0)+x1x0xx0f(x1)+2!f(2)(ξ)(xx0)(xx1) 这是一阶的估计,用到了 x 0 x_0 x0, x 1 x_1 x1这俩点,最右边是截断误差。可以发现 P 1 ( x 0 ) = f ( x 0 ) P_1(x_0) = f(x_0) P1(x0)=f(x0), P 1 ( x 1 ) = f ( x 1 ) P_1(x_1) = f(x_1) P1(x1)=f(x1), 在已知点上我们的估计肯定要零误差,然后在其他点它的表现也不错。
同理:
P 2 ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) f ( x 0 ) + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) f ( x 1 ) + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) f ( x 2 ) + f ( 3 ) ( ξ ) 3 ! ( x − x 0 ) ( x − x 1 ) ( x − x 2 ) P_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f(x_1) + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2)+ \frac{f^{(3)}(\xi )}{3!}(x-x_0)(x-x_1)(x-x_2) P2(x)=(x0x1)(x0x2)(xx1)(xx2)f(x0)+(x1x0)(x1x2)(xx0)(xx2)f(x1)+(x2x0)(x2x1)(xx0)(xx1)f(x2)+3!f(3)(ξ)(xx0)(xx1)(xx2) 这是二阶的估计,别看公式长,掌握了逻辑根本不需要背。

Hermite插值

不止利用已知函数值,还利用了一阶的函数值。

三次样条插值

不是一次就估计出整体了,我们进行分段估计,每个分段我们还用三次的函数进行逼近,所以我们在前面的基础上还利用了二阶的函数值,效果可以说非常的布戳。

微分

前面是利用点估计函数值,现在是利用点估计函数的微分值,一次二次都可由,没错,就是一个公式然后把已知的点都代进去就能估计黑盒子在未知点的值,而且误差很小。
公式可以由泰勒公式推出,也可以由拉格朗日插值去推出(列出拉格朗日插值一般式然后求导,再代值)。
重要的有三点公式五点公式二阶的公式。公式你们书上都有,这就不列了。

理查森外推

这是很重要的一个知识,通过变化已知公式的形式再运算,可消去低阶的部分,得到高阶的误差。一般是 h → h 2 h\to \frac{h}{2} h2h, 得到新式子,然后与原式两个搞一搞就可以消去低阶。

积分

搞完微分不搞积分说不过去,利用已知点推出函数的积分值,公式可以由拉格朗日函数推出。
重点的公式有梯形法则辛普森法则中点法则,不同公式的误差阶数不一样哦。

复合积分

与三次样条插值一样的思路,对于 ∫ 0 4 \int_{0}^{4} 04这样的大区间,直接一步到位估计出来误差会很大,现在分段来搞它, ∫ 0 4 = ∫ 0 1 + ∫ 1 2 + ∫ 2 3 + ∫ 3 4 \int_{0}^{4} = \int_{0}^{1}+\int_{1}^{2}+\int_{2}^{3}+\int_{3}^{4} 04=01+12+23+34 比如上面就分类四段,每一段我们都单独用一次梯形法则 或 辛普森法则 或 中点法则,就叫复合梯形法则复合辛普森法则复合中点法则

高斯积分

上面的已知点都是以一定步长h来选择的,即 x 1 = x 0 + h x_1 = x_0 + h x1=x0+h, 高斯求积想要以误差最小为准则选择参考点,参考点之间就没有距离关系了。 ∫ a b f ( x ) d x ≈ ∑ i = 1 n C i f ( x i ) \int_{a}^{b}f(x)dx \approx \sum_{i=1}^{n}C_if(x_i) abf(x)dxi=1nCif(xi) ∫ − 1 1 f ( x ) d x ≈ f ( − 3 3 ) + f ( 3 3 ) \int_{-1}^{1}f(x)dx \approx f(-\frac{\sqrt{3}}{3})+f(\frac{\sqrt{3}}{3}) 11f(x)dxf(33 )+f(33 ) ∫ a b f ( x ) d x = ∫ − 1 1 f ( ( b − a ) t + ( b + a ) 2 ) ( b − a 2 ) d t \int_{a}^{b}f(x)dx =\int_{-1}^{1} f(\frac{(b-a)t+(b+a)}{2})(\frac{b-a}{2})dt abf(x)dx=11f(2(ba)t+(b+a))(2ba)dt 以上公式有点重要且简单我就列出来了。

多重积分

自变量一般都是相互独立的,所以就是用两次积分公式罢了,公式会很长,但本质不变,繁琐了点而已。

带初值的常微分方程(ODE)

现在进入求解微分方程,公式可以由泰勒公式推出,重点有 欧拉法泰勒法龙格库塔法
欧拉法只用了普通的函数值去估计; w i + 1 = w i + h ⋅ f ( t i , w i ) , w o = α w_{i+1} = w_i + h\cdot f(t_i,w_i),\quad w_o =\alpha wi+1=wi+hf(ti,wi),wo=α
泰勒法则会利用高阶的函数值,有时候不太现实,因为毕竟是个黑盒子,可知的信息不会太多; w i + 1 = w i + h ⋅ T ( n ) ( t i , w i ) , w o = α w_{i+1} = w_i + h\cdot T^{(n)}(t_i,w_i),\quad w_o =\alpha wi+1=wi+hT(n)(ti,wi),wo=α
龙格库塔法非常非常重要,因为它想着避开高阶的函数值,就用普通函数值去估计,对于中点法,有 w i + 1 = w i + h ⋅ f ( t i + h 2 , w i + h 2 f ( t i , w i ) ) , w o = α w_{i+1} = w_i + h\cdot f(t_i + \frac{h}{2},w_i +\frac{h}{2}f(t_i,w_i) ),\quad w_o =\alpha wi+1=wi+hf(ti+2h,wi+2hf(ti,wi)),wo=α 还有改进欧拉法, 上面两个方法都属于二阶龙格库塔法, 最经典的就是四阶龙格库塔法,也叫RK4,非常重要! 公式就不列了。
 

多步法

从上面解决微分方程的方法中,我们发现每次迭代运算只用了前面的一点,我们想着能不能每次运算都用上之前的多个点的信息,多步法应运而生。
有多步的显式方法,多步的隐式方法,和预测-校验法。多步法中的初值一般就用RK4来算出

隐式法就是每次迭代运算还需要利用将来的要求的值,显然正常是不可能的,所以要先把隐式化为显示再计算。
预测-校验法:很多式子其实很难化隐为显,所以提出新思路,先用显示算出将来的代求值,这叫预测,再用算出的值带入隐式得出更精确的代求值,这叫校验,很妙。

 

总结

重点就四个部分,插值微分积分ODE

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全栈O-Jay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值