牛客练习赛69 F.解方程(贝尔级数+线性筛)

本篇博客主要介绍了牛客练习赛69 F题的解题思路,利用贝尔级数和线性筛解决积性函数问题。通过对σp(n)和σq(n)的分析,导出f(n)的贝尔级数表达式,并计算质数和质数次方处的值,最后采用线性筛进行高效求解,整体时间复杂度为O(n)。
摘要由CSDN通过智能技术生成

牛客练习赛69 F.解方程(贝尔级数+线性筛)

传送门:https://ac.nowcoder.com/acm/contest/7329/F
题目大意:
在这里插入图片描述
题解:不难发现, f ( n ) f(n) f(n) 一定为积性函数,这是因为 σ p ( n ) \sigma_p(n) σp(n) σ q ( n ) \sigma_q(n) σq(n) 均为积性函数,此时便可以使用贝尔级数展开求出 f ( n ) f(n) f(n) 的表达式。考虑 σ k = id ⁡ k ∗ 1 \sigma_k=\operatorname{id}_k*1 σk=idk1 ,则 σ k ( n ) \sigma_k(n) σk(n) 的贝尔级数形式就是 σ k p = id ⁡ k p × 1 p = 1 ( 1 − x ) ( 1 − p k x ) {\sigma_k}_p={\operatorname{id}_k}_p\times 1_p=\frac{1}{(1-x)(1-p^kx)} σkp=idkp×1p=(1x)(1pkx)1 。为了避免记号混淆,令题目中的 p , q p,q p,q 改为 a , b a,b a,b 。那么:

f p × σ a p = σ b p f p × 1 ( 1 − x ) ( 1 − p a x ) = 1 ( 1 − x ) ( 1 − p b x ) f p = 1 − p a x 1 − p b x f p = ( id ⁡ a μ ) p × id ⁡ b p f ( n ) = ( id ⁡ a μ ∗ id ⁡ b ) ( n ) f_p\times {\sigma_a}_p={\sigma_b}_p \\f_p\times \frac{1}{(1-x)(1-p^ax)}=\frac{1}{(1-x)(1-p^bx)} \\f_p=\frac{1-p^ax}{1-p^bx} \\f_p=(\operatorname{id}_a\mu)_p\times {\operatorname{id}_b}_p \\f(n)=(\operatorname{id}_a\mu*\operatorname{id}_b)(n) fp×σap=σbpfp×(1x)(1pax)1=(1x)(1pbx)1fp=1pbx1paxfp=(idaμ)p×idbpf(n)=(idaμidb)(n)

计算 f ( n ) f(n) f(n) 在质数或质数次方数处的取值,得到 f ( p r ) = p r b − p ( r − 1 ) b + a   ( r ≥ 1 ) f(p^r)=p^{rb}-p^{(r-1)b+a}\space (r\geq 1) f(pr)=prbp(r1)b+a (r1) ,不难发现,对于每一个 f ( p k )   ( k > 1 ) f(p^k)\space (k>1) f(pk) (k>1) ,都有 f ( p k ) = p b f ( p k − 1 ) f(p^k)=p^bf(p^{k-1}) f(pk)=pbf(pk1) ,此时用线性筛维护即可。时间复杂度 O ( n ) O(n) O(n)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e7+5,M=998244353;
int cnt=0,prime[N],f[N],bmi[N];
bitset<N> vis;
ll qpow(ll a,ll b){
    ll res=1;
    while(b){
        if(b&1) res=(res*a)%M;
        a=(a*a)%M;
        b>>=1;
    }
    return res;
}
void init(ll n,ll a,ll b){
    bmi[1]=f[1]=1;
    for(int i=2;i<=n;++i){
        if(!vis[i]){
            prime[cnt++]=i;
			bmi[i]=qpow(i,b); 
            f[i]=((ll)bmi[i]-(ll)qpow(i,a))%M;
        }
        for(int j=0;i*prime[j]<=n;++j){
            int t=i*prime[j];
            vis[t]=1;
            if(i%prime[j]){
                f[t]=((ll)f[i]*(ll)f[prime[j]])%M;
            }
            else{
            	f[t]=((ll)f[i]*(ll)bmi[prime[j]])%M;
            	break;
			}
        }
    }
}
int main(){
    ll n,a,b;
    cin>>n>>a>>b;
    init(n,a,b);
    ll res=1;
    for(int i=2;i<=n;++i){
        ll t=f[i];
        if(t<0) t+=M;
        res^=t;
    }
    cout<<res<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>