数论题乱搞

符号约定:
p ∈ p r i m e p \in prime pprime ∀ i ≠ j , p i ≠ p j \forall i\neq j,p_i\neq p_j i=j,pi=pj
φ ( n ) \varphi(n) φ(n):欧拉函数
σ ( n ) \sigma(n) σ(n):约数和函数
τ ( n ) \tau(n) τ(n):约数个数函数
id ⁡ k ( n ) \operatorname{id}_k(n) idk(n):恒等函数,即 id ⁡ k ( n ) = n k \operatorname{id}_k(n)=n^k idk(n)=nk id ⁡ 1 ( n ) \operatorname{id}_1(n) id1(n)简记为 id ⁡ ( n ) \operatorname{id}(n) id(n)
μ ( n ) \mu(n) μ(n):莫比乌斯函数
1 ( n ) 1(n) 1(n):常数1函数
[ x ] [x] [x]:真值函数,当且仅当 x x x true ⁡ \operatorname{true} true,函数值为1,否则函数值为0
ω ( n ) \omega(n) ω(n) n n n的所有不同质因数个数
[ [ x i ] ] D [[x^i]]D [[xi]]D:多项式 D D D x i x^i xi的系数

(1)求证:数论函数 f ( n ) = ⌊ φ ( n ) + σ ( n ) n τ ( n ) ⌋ = { 2     n = 1 1     n ∈ p r i m e 0     e l s e f(n)=\lfloor\frac{\varphi(n)+\sigma(n)}{n\tau(n)}\rfloor=\left\{\begin{aligned}2&\space\space\space&n=1\\1&\space\space\space&n \in prime\\0&\space\space\space&else \end{aligned}\right. f(n)=nτ(n)φ(n)+σ(n)=210         n=1nprimeelse

证明:设 F ( n ) = φ ( n ) + σ ( n ) n τ ( n ) F(n)=\frac{\varphi(n)+\sigma(n)}{n\tau(n)} F(n)=nτ(n)φ(n)+σ(n),现在分类讨论 n n n的取值情况。

( 1 )     n = 1 ∵ F ( 1 ) = 1 + 1 1 × 1 = 2 ∴ f ( 1 ) = 2 (1)\space\space\space n=1\\\because F(1)=\frac{1+1}{1\times 1}=2\\\therefore f(1)=2 (1)   n=1F(1)=1×11+1=2f(1)=2

( 2 )     n = p ∵ F ( p ) = p − 1 + p + 1 p × 2 = 1 ∴ f ( p ) = 1 (2)\space\space\space n=p\\\because F(p)=\frac{p-1+p+1}{p\times 2}=1\\\therefore f(p)=1 (2)   n=pF(p)=p×2p1+p+1=1f(p)=1

( 3 )     n = p 1 p 2 ∵ F ( p 1 p 2 ) = ( p 1 − 1 ) ( p 2 − 1 ) + ( p 1 + 1 ) ( p 2 + 1 ) 4 p 1 p 2 = ( p 1 − 1 ) ( p 2 − 1 ) 4 p 1 p 2 + ( p 1 + 1 ) ( p 2 + 1 ) 4 p 1 p 2 < p 1 p 2 4 p 1 p 2 + p 1 p 2 + p 1 + p 2 + 1 4 p 1 p 2 = 1 4 + 1 4 + 1 4 p 1 + 1 4 p 2 + 1 4 p 1 p 2 ≤ 1 2 + 1 4 × 2 + 1 4 × 3 + 1 4 × 2 × 3 = 3 4 < 1 ∴ f ( p 1 p 2 ) = 0 (3)\space\space\space n=p_1p_2\\\because F(p_1p_2)=\frac{(p_1-1)(p_2-1)+(p_1+1)(p_2+1)}{4p_1p_2}\\=\frac{(p_1-1)(p_2-1)}{4p_1p_2}+\frac{(p_1+1)(p_2+1)}{4p_1p_2}\\<\frac{p_1p_2}{4p_1p_2}+\frac{p_1p_2+p_1+p_2+1}{4p_1p_2}\\=\frac{1}{4}+\frac{1}{4}+\frac{1}{4p_1}+\frac{1}{4p_2}+\frac{1}{4p_1p_2}\\\le \frac{1}{2}+\frac{1}{4\times 2}+\frac{1}{4\times 3}+\frac{1}{4\times 2\times 3}\\=\frac{3}{4}<1\\\therefore f(p_1p_2)=0 (3)   n=p1p2F(p1p2)=4p1p2(p11)(p21)+(p1+1)(p2+1)=4p1p2(p11)(p21)+4p1p2(p1+1)(p2+1)<4p1p2p1p2+4p1p2p1p2+p1+p2+1=41+41+4p11+4p21+4p1p2121+4×21+4×31+4×2×31=43<1f(p1p2)=0

( 4 )     n = ∏ i = 1 k p i F ( n p k + 1 ) = φ ( n ) ( p k + 1 − 1 ) + σ ( n ) ( p k + 1 + 1 ) 2 n p k + 1 τ ( n ) < ( p k + 1 + 1 ) ( φ ( n ) + σ ( n ) ) 2 n p k + 1 τ ( n ) = F ( n ) 2 + F ( n ) 2 p k + 1 < F ( n ) (4)\space\space\space n=\prod\limits_{i=1}^kp_i\\F(np_{k+1})=\frac{\varphi(n)(p_{k+1}-1)+\sigma(n)(p_{k+1}+1)}{2np_{k+1}\tau(n)}\\<\frac{(p_{k+1}+1)(\varphi(n)+\sigma(n))}{2np_{k+1}\tau(n)}\\=\frac{F(n)}{2}+\frac{F(n)}{2p_k+1}\\<F(n) (4)   n=i=1kpiF(npk+1)=2npk+1τ(n)φ(n)(pk+11)+σ(n)(pk+1+1)<2npk+1τ(n)(pk+1+1)(φ(n)+σ(n))=2F(n)+2pk+1F(n)<F(n)

( 3 ) ( 4 ) (3)(4) (3)(4)数学归纳可得,
∀ k > 1 , n = ∏ i = 1 k p i , s.t. ⁡ F ( n ) < 1 ∴ f ( n ) = 0 \forall k>1,n=\prod\limits_{i=1}^{k}p_i,\operatorname{ s.t. }F(n)<1\\\therefore f(n)=0 k>1,n=i=1kpi,s.t.F(n)<1f(n)=0

( 5 )     gcd ⁡ ( n , p ) = 1 , k > 1 ∵ F ( n p k ) = φ ( n ) p k − 1 ( p − 1 ) + σ ( n ) ∑ i = 0 k p i n p k τ ( n ) ( k + 1 ) = φ ( n ) ( p k − 1 − p k − 2 ) ( p − 1 ) + p k − 2 ( p − 1 ) φ ( n ) + σ ( n ) σ ( p k − 1 ) + σ ( n ) p k n p k τ ( n ) ( k + 1 ) = φ ( n ) φ ( p k − 1 ) + σ ( n ) σ ( p k − 1 ) + φ ( n ) p k − 2 ( p − 1 ) 2 + σ ( n ) p k n p k τ ( n ) ( k + 1 ) = k ( φ ( n ) φ ( p k − 1 ) + σ ( n ) σ ( p k − 1 ) ) n p k − 1 τ ( n ) k p ( k + 1 ) + φ ( n ) p k − 2 ( p − 1 ) 2 + σ ( n ) ( p k − 1 ) + σ ( n ) n p k τ ( n ) ( k + 1 ) = k F ( n p k − 1 ) p ( k + 1 ) + ( p − 1 ) ( φ ( n ) p k − 2 ( p − 1 ) + σ ( n ) p k − 1 p − 1 ) + σ ( n ) n p k τ ( n ) ( k + 1 ) = k F ( n p k − 1 ) p ( k + 1 ) + k ( p − 1 ) ( φ ( n ) φ ( p k − 1 ) + σ ( n ) σ ( p k − 1 ) ) n p k − 1 τ ( n ) k p ( k + 1 ) + σ ( n ) n p k τ ( n ) ( k + 1 ) = k F ( n p k − 1 ) p ( k + 1 ) + k ( p − 1 ) F ( n p k − 1 ) p ( k + 1 ) + σ ( n ) n p k τ ( n ) ( k + 1 ) = k F ( n p k − 1 ) k + 1 + σ ( n ) n p k τ ( n ) ( k + 1 ) (5)\space\space\space \gcd(n,p)=1,k>1\\\because F(np^k)=\frac{\varphi(n)p^{k-1}(p-1)+\sigma(n)\sum\limits_{i=0}^{k}p^i}{np^k\tau(n)(k+1)}\\=\frac{\varphi(n)(p^{k-1}-p^{k-2})(p-1)+p^{k-2}(p-1)\varphi(n)+\sigma(n)\sigma(p^{k-1})+\sigma(n)p^k}{np^k\tau(n)(k+1)}\\=\frac{\varphi(n)\varphi(p^{k-1})+\sigma(n)\sigma(p^{k-1})+\varphi(n)p^{k-2}(p-1)^2+\sigma(n)p^k}{np^k\tau(n)(k+1)}\\=\frac{k(\varphi(n)\varphi(p^{k-1})+\sigma(n)\sigma(p^{k-1}))}{np^{k-1}\tau(n)kp(k+1)}+\frac{\varphi(n)p^{k-2}(p-1)^2+\sigma(n)(p^k-1)+\sigma(n)}{np^k\tau(n)(k+1)}\\=\frac{kF(np^{k-1})}{p(k+1)}+\frac{(p-1)(\varphi(n)p^{k-2}(p-1)+\sigma(n)\frac{p^k-1}{p-1})+\sigma(n)}{np^k\tau(n)(k+1)}\\=\frac{kF(np^{k-1})}{p(k+1)}+\frac{k(p-1)(\varphi(n)\varphi(p^{k-1})+\sigma(n)\sigma(p^{k-1}))}{np^{k-1}\tau(n)kp(k+1)}+\frac{\sigma(n)}{np^k\tau(n)(k+1)}\\=\frac{kF(np^{k-1})}{p(k+1)}+\frac{k(p-1)F(np^{k-1})}{p(k+1)}+\frac{\sigma(n)}{np^k\tau(n)(k+1)}\\=\frac{kF(np^{k-1})}{k+1}+\frac{\sigma(n)}{np^k\tau(n)(k+1)} (5)   gcd(n,p)=1,k>1F(npk)=npkτ(n)(k+1)φ(n)pk1(p1)+σ(n)i=0kpi=npkτ(n)(k+1)φ(n)(pk1pk2)(p1)+pk2(p1)φ(n)+σ(n)σ(pk1)+σ(n)pk=npkτ(n)(k+1)φ(n)φ(pk1)+σ(n)σ(pk1)+φ(n)pk2(p1)2+σ(n)pk=npk1τ(n)kp(k+1)k(φ(n)φ(pk1)+σ(n)σ(pk1))+npkτ(n)(k+1)φ(n)pk2(p1)2+σ(n)(pk1)+σ(n)=p(k+1)kF(npk1)+npkτ(n)(k+1)(p1)(φ(n)pk2(p1)+σ(n)p1pk1)+σ(n)=p(k+1)kF(npk1)+npk1τ(n)kp(k+1)k(p1)(φ(n)φ(pk1)+σ(n)σ(pk1))+npkτ(n)(k+1)σ(n)=p(k+1)kF(npk1)+p(k+1)k(p1)F(npk1)+npkτ(n)(k+1)σ(n)=k+1kF(npk1)+npkτ(n)(k+1)σ(n)
∵ σ ( n ) n p k τ ( n ) ( k + 1 ) = k σ ( n ) n p k − 1 τ ( n ) k p ( k + 1 ) = k σ ( p k − 1 ) σ ( n ) n p k − 1 τ ( n ) k σ ( p k − 1 ) p ( k + 1 ) < k p σ ( p k − 1 ) × F ( n p k − 1 ) k + 1 = ∑ i = 1 k 1 ∑ i = 1 k p i × F ( n p k − 1 ) k + 1 < F ( n p k − 1 ) k + 1 ∴ F ( n p k ) < F ( n p k − 1 ) < ⋯ < F ( n p ) \because \frac{\sigma(n)}{np^k\tau(n)(k+1)}\\=\frac{k\sigma(n)}{np^{k-1}\tau(n)kp(k+1)}\\=\frac{k\sigma(p^{k-1})\sigma(n)}{np^{k-1}\tau(n)k\sigma(p^{k-1})p(k+1)}\\< \frac{k}{p\sigma(p^{k-1})}\times\frac{F(np^{k-1})}{k+1}\\= \frac{\sum\limits_{i=1}^k1}{\sum\limits_{i=1}^kp^i}\times\frac{F(np^{k-1})}{k+1}\\<\frac{F(np^{k-1})}{k+1}\\\therefore F(np^k)<F(np^{k-1})<\cdots <F(np) npkτ(n)(k+1)σ(n)=npk1τ(n)kp(k+1)kσ(n)=npk1τ(n)kσ(pk1)p(k+1)kσ(pk1)σ(n)<pσ(pk1)k×k+1F(npk1)=i=1kpii=1k1×k+1F(npk1)<k+1F(npk1)F(npk)<F(npk1)<<F(np)

此时可得, ∀ n = ∏ i = 1 r p i s i , ∃ 1 ≤ k ≤ r , s k > 1 , s.t. ⁡ F ( n ) < F ( ∏ i = 1 r p i ) \forall n=\prod\limits_{i=1}^rp_{i}^{s_i},\exist 1\leq k\leq r,s_k>1,\operatorname{ s.t. }F(n)<F(\prod\limits_{i=1}^rp_i) n=i=1rpisi,1kr,sk>1,s.t.F(n)<F(i=1rpi)
同时由 ( 3 ) ( 4 ) (3)(4) (3)(4) 又知, F ( ∏ i = 1 r p i ) ≤ 1 F(\prod\limits_{i=1}^rp_i)\leq 1 F(i=1rpi)1,当且仅当 r = 1 r=1 r=1时取到等号。

综上所述, F ( n ) = φ ( n ) + σ ( n ) n τ ( n ) { = 2     n = 1 = 1     n ∈ p r i m e < 1     e l s e F(n)=\frac{\varphi(n)+\sigma(n)}{n\tau(n)}\left\{ \begin{aligned} =2&\space\space\space&n=1\\ =1&\space\space\space&n \in prime\\ <1&\space\space\space&else \end{aligned} \right. F(n)=nτ(n)φ(n)+σ(n)=2=1<1         n=1nprimeelse
f ( n ) = ⌊ F ( n ) ⌋ = { 2     n = 1 1     n ∈ p r i m e 0     e l s e f(n)=\lfloor F(n)\rfloor=\left\{ \begin{aligned} 2&\space\space\space&n=1\\ 1&\space\space\space&n \in prime\\ 0&\space\space\space&else \end{aligned} \right. f(n)=F(n)=210         n=1nprimeelse

现在讨论利用狄利克雷卷积证明。
证明: ∵ φ ( n ) = ( id ⁡ ∗ μ ) ( n ) , σ ( n ) = ( id ⁡ ∗ 1 ) ( n ) ∴ φ ( n ) + σ ( n ) = ( id ⁡ ∗ ( 1 + μ ) ) ( n ) = ∑ d ∣ n ( 1 + μ ( d ) ) n d \because \varphi(n)=(\operatorname{id}*\mu)(n),\sigma(n)=(\operatorname{id}*1)(n)\\\therefore \varphi(n)+\sigma(n)=(\operatorname{id}*(1+\mu))(n)=\sum\limits_{d \mid n}(1+\mu(d))\frac{n}{d} φ(n)=(idμ)(n),σ(n)=(id1)(n)φ(n)+σ(n)=(id(1+μ))(n)=dn(1+μ(d))dn
∵ n τ ( n ) = n ∑ d ∣ n 1 = ∑ d ∣ n d × n d , max ⁡ ( 1 + μ ( n ) ) = 2 ∴ ∀ n = ∏ i = 1 r p i s i , φ ( n ) + σ ( n ) = n + n + ∑ d ∣ n , d ≠ 1 , d ≠ min ⁡ ( p i ) ( 1 + μ ( d ) ) n d ≤ n + n + ∑ d ∣ n , d ≠ 1 , d ≠ min ⁡ ( p i ) d × n d = n τ ( n ) \because n\tau(n)=n\sum\limits_{d\mid n}1=\sum\limits_{d\mid n} d\times\frac{n}{d},\max(1+\mu(n))=2\\\therefore \forall n=\prod\limits_{i=1}^rp_i^{s_i},\\\varphi(n)+\sigma(n)\\=n+n+\sum\limits_{d\mid n,d\neq 1,d\neq\min(p_i)}(1+\mu(d))\frac{n}{d}\\\leq n+n+\sum\limits_{d\mid n,d\neq 1,d\neq\min(p_i)}d\times\frac{n}{d}\\=n\tau(n) nτ(n)=ndn1=dnd×dn,max(1+μ(n))=2n=i=1rpisi,φ(n)+σ(n)=n+n+dn,d=1,d=min(pi)(1+μ(d))dnn+n+dn,d=1,d=min(pi)d×dn=nτ(n)
当且仅当 r = 1 r=1 r=1时取到等号。即
φ ( n ) + σ ( n ) { = 2 n τ ( n )     n = 1 = n τ ( n )     n ∈ p r i m e < n τ ( n )     e l s e \varphi(n)+\sigma(n)\left\{ \begin{aligned} &=2n\tau(n)\space\space\space&n=1\\ &=n\tau(n)\space\space\space&n \in prime\\ &<n\tau(n)\space\space\space&else \end{aligned} \right. φ(n)+σ(n)=2nτ(n)   =nτ(n)   <nτ(n)   n=1nprimeelse

那么 f ( n ) = ⌊ φ ( n ) + σ ( n ) n τ ( n ) ⌋ = { 2     n = 1 1     n ∈ p r i m e 0     e l s e f(n)=\lfloor\frac{\varphi(n)+\sigma(n)}{n\tau(n)}\rfloor=\left\{ \begin{aligned} 2&\space\space\space&n=1\\ 1&\space\space\space&n \in prime\\ 0&\space\space\space&else \end{aligned} \right. f(n)=nτ(n)φ(n)+σ(n)=210         n=1nprimeelse

(2)求证:如果方程 φ ( n ) = k \varphi(n)=k φ(n)=k存在唯一解 n n n,那么 36 ∣ n 36\mid n 36n

证明:分类讨论 n n n的取值情况。

( 1 ) 2 ∤ n φ ( n ) = ( 2 − 1 ) φ ( n ) = φ ( 2 n ) (1) 2\nmid n\\\varphi(n)=(2-1)\varphi(n)=\varphi(2n) (1)2nφ(n)=(21)φ(n)=φ(2n)
此时不符合题意。

( 2 ) 2 ∣ n , 4 ∤ n φ ( n ) = φ ( 2 × n 2 ) = φ ( 2 ) φ ( n 2 ) = φ ( n 2 ) (2) 2\mid n,4\nmid n\\\varphi(n)=\varphi(2\times\frac{n}{2})=\varphi(2)\varphi(\frac{n}{2})=\varphi(\frac{n}{2}) (2)2n,4nφ(n)=φ(2×2n)=φ(2)φ(2n)=φ(2n)
此时不符合题意。

( 3 ) 4 ∣ n , 3 ∤ n φ ( n ) = 2 φ ( n 2 ) = φ ( 3 ) φ ( n 2 ) = φ ( 3 n 2 ) (3) 4\mid n,3\nmid n\\\varphi(n)=2\varphi(\frac{n}{2})=\varphi(3)\varphi(\frac{n}{2})=\varphi(\frac{3n}{2}) (3)4n,3nφ(n)=2φ(2n)=φ(3)φ(2n)=φ(23n)
此时不符合题意。

( 4 ) 12 ∣ n , 9 ∤ n φ ( n ) = φ ( 3 ) φ ( n 3 ) = 2 φ ( n 3 ) = φ ( 2 n 3 ) (4) 12\mid n,9\nmid n\\\varphi(n)=\varphi(3)\varphi(\frac{n}{3})=2\varphi(\frac{n}{3})=\varphi(\frac{2n}{3}) (4)12n,9nφ(n)=φ(3)φ(3n)=2φ(3n)=φ(32n)
此时不符合题意。

综上所述,如果方程 φ ( n ) = k \varphi(n)=k φ(n)=k存在唯一解 n n n,那么一定有 36 ∣ n 36\mid n 36n

(3)求证:不存在两个不相等的正整数具有相同的因子之积。

证明:设 f ( n ) = ∏ d ∣ n d f(n)=\prod\limits_{d\mid n}d f(n)=dnd
n n n为平方数时,
f ( n ) = n τ ( n ) − 1 2 n = n τ ( n ) 2 f(n)=n^{\frac{\tau(n)-1}{2}}\sqrt n=n^{\frac{\tau(n)}{2}} f(n)=n2τ(n)1n =n2τ(n)
n n n不为平方数时,
f ( n ) = n τ ( n ) 2 f(n)=n^{\frac{\tau(n)}{2}} f(n)=n2τ(n)
综上所述,对于所有正整数 n n n f ( n ) = n τ ( n ) 2 f(n)=n^{\frac{\tau(n)}{2}} f(n)=n2τ(n)

m ≤ n m\le n mn m k = n m^k=n mk=n k k k为一大于等于 1 1 1的有理数。对于正整数 n n n的质因数分解形式 p 1 s 1 p 2 s 2 ⋯ p r s r p_1^{s_1}p_2^{s_2}\cdots p_r^{s_r} p1s1p2s2prsr,那么 m m m的质因数分解形式为 p 1 s 1 k p 2 s 2 k ⋯ p r s r k p_1^{\frac{s_1}{k}}p_2^{\frac{s_2}{k}}\cdots p_r^{\frac{s_r}{k}} p1ks1p2ks2prksr。由此可得, τ ( n ) = ∏ i = 1 r 1 + s i , τ ( m ) = ∏ i = 1 r 1 + s i k \tau(n)=\prod\limits_{i=1}^r1+s_i,\tau(m)=\prod\limits_{i=1}^r 1+\frac{s_i}{k} τ(n)=i=1r1+si,τ(m)=i=1r1+ksi,发现有 τ ( m ) ≤ τ ( n ) \tau(m)\le \tau(n) τ(m)τ(n),当且仅当 k = 1 k=1 k=1时取到等号。
如果有 f ( n ) = f ( m ) ⇒ n τ ( n ) 2 = m τ ( m ) 2 f(n)=f(m)\Rightarrow n^{\frac{\tau(n)}{2}}=m^{\frac{\tau(m)}{2}} f(n)=f(m)n2τ(n)=m2τ(m)成立,一定有 τ ( n ) ≤ τ ( m ) \tau(n) \leq \tau(m) τ(n)τ(m)成立。此时只能取 k = 1 k=1 k=1使得不等式成立,即 m = n m=n m=n

综上所述,两个正整数具有相同的因子之积当且仅当那两个数相等,即不存在两个不相等的正整数具有相同的因子之积。

(4)求解:最小公倍数等于 n n n的所有有序正整数对的个数。

解:作求和式
      ∑ i = 1 n ∑ j = 1 n [ lcm ⁡ ( i , j ) = n ] = ∑ i = 1 n ∑ j = 1 n [ i j gcd ⁡ ( i , j ) = n ] = ∑ i = 1 n ∑ j = 1 n ∑ d = 1 n [ i j = d n ] [ d = gcd ⁡ ( i , j ) ] = ∑ d ∣ n n ∑ i = 1 n d ∑ j = 1 n d [ i j = n d ] [ 1 = gcd ⁡ ( i , j ) ] = ∑ d ∣ n n ∑ k ∣ n d [ 1 = gcd ⁡ ( k , n d k ) ] = ∑ d ∣ n n ∑ k ∣ d [ 1 = gcd ⁡ ( k , d k ) ] \begin{aligned} &\space\space\space\space\space\sum\limits_{i=1}^n\sum\limits_{j=1}^n[\operatorname{lcm}(i,j)=n] \\&=\sum\limits_{i=1}^n\sum\limits_{j=1}^n[\frac{ij}{\gcd(i,j)}=n] \\&=\sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{d=1}^n[ij=dn][d=\gcd(i,j)] \\&=\sum\limits_{d\mid n}^n\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{n}{d}}[ij=\frac{n}{d}][1=\gcd(i,j)] \\&=\sum\limits_{d\mid n}^n\sum\limits_{k\mid \frac{n}{d}}[1=\gcd(k,\frac{n}{dk})] \\&=\sum\limits_{d\mid n}^n\sum\limits_{k\mid {d}}[1=\gcd(k,\frac{d}{k})] \end{aligned}      i=1nj=1n[lcm(i,j)=n]=i=1nj=1n[gcd(i,j)ij=n]=i=1nj=1nd=1n[ij=dn][d=gcd(i,j)]=dnni=1dnj=1dn[ij=dn][1=gcd(i,j)]=dnnkdn[1=gcd(k,dkn)]=dnnkd[1=gcd(k,kd)]
现考虑化简 ∑ k ∣ d [ 1 = gcd ⁡ ( k , d k ) ] \sum\limits_{k\mid {d}}[1=\gcd(k,\frac{d}{k})] kd[1=gcd(k,kd)],设 d d d的质因数分解形式为 p 1 s 1 p 2 s 2 ⋯ p r s r p_1^{s_1}p_2^{s_2}\cdots p_r^{s_r} p1s1p2s2prsr,显然当且仅当 k = p a 1 s a 1 p a 2 s a 2 ⋯ p a t s a t k=p_{a_1}^{s_{a_1}}p_{a_2}^{s_{a_2}}\cdots p_{a_t}^{s_{a_t}} k=pa1sa1pa2sa2patsat,有 gcd ⁡ ( k , d k ) = 1 \gcd(k,\frac{d}{k})=1 gcd(k,kd)=1,不难发现对于这样的 k k k,情况数总和即为 ∑ i = 0 r [ [ x i ] ] ( 1 + x ) r \sum\limits_{i=0}^r[[x^i]](1+x)^r i=0r[[xi]](1+x)r。因为我们只需要关心多项式的系数和,所以可以把 1 1 1带入 x x x得到系数和。那么 ∑ k ∣ d [ 1 = gcd ⁡ ( k , d k ) ] = 2 r = 2 ω ( d ) \sum\limits_{k\mid {d}}[1=\gcd(k,\frac{d}{k})]=2^r=2^{\omega(d)} kd[1=gcd(k,kd)]=2r=2ω(d)。原式化为:
∑ d ∣ n n ∑ k ∣ d [ 1 = gcd ⁡ ( k , d k ) ] = ∑ d ∣ n n 2 ω ( d ) \sum\limits_{d\mid n}^n\sum\limits_{k\mid {d}}[1=\gcd(k,\frac{d}{k})]=\sum\limits_{d\mid n}^n2^{\omega(d)} dnnkd[1=gcd(k,kd)]=dnn2ω(d)
不难证明 2 ω ( n ) 2^{\omega(n)} 2ω(n)为积性函数,而原式实际上是 ( 2 ω ( n ) ∗ 1 ) (2^{\omega(n)}*1) (2ω(n)1)的形式,两个积性函数的狄利克雷卷积仍为积性函数。考察 ( 2 ω ( n ) ∗ 1 ) ( p k ) (2^{\omega(n)}*1)(p^k) (2ω(n)1)(pk)的值, k ≥ 1 k\ge 1 k1,有
( 2 ω ( n ) ∗ 1 ) ( p k ) = ∑ i = 0 k 2 ω ( p i ) = 1 + ∑ i = 1 k 2 = 1 + 2 k (2^{\omega(n)}*1)(p^k)=\sum\limits_{i=0}^{k}2^{\omega(p^i)}=1+\sum\limits_{i=1}^{k}2=1+2k (2ω(n)1)(pk)=i=0k2ω(pi)=1+i=1k2=1+2k
注意到 τ ( n 2 ) \tau(n^2) τ(n2) p k p^k pk处的值也为
τ ( p 2 k ) = 1 + 2 k \tau(p^{2k})=1+2k τ(p2k)=1+2k
τ ( n 2 ) \tau(n^2) τ(n2)也为积性函数。说明
∑ d ∣ n n 2 ω ( d ) = τ ( n 2 ) \sum\limits_{d\mid n}^n2^{\omega(d)}=\tau(n^2) dnn2ω(d)=τ(n2)

考虑利用枚举方法得出答案,设 i = p 1 a 1 p 2 a 2 ⋯ p r a r , j = p 1 b 1 p 2 b 2 ⋯ p r b r , n = p 1 c 1 p 2 c 2 ⋯ p r c r i=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r},j=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r},n=p_1^{c_1}p_2^{c_2}\cdots p_r^{c_r} i=p1a1p2a2prar,j=p1b1p2b2prbr,n=p1c1p2c2prcr,考虑最小公倍数的定义,有 max ⁡ ( a k , b k ) = c k \max(a_k,b_k)=c_k max(ak,bk)=ck。如果 a k = c k a_k=c_k ak=ck b k b_k bk可取 [ 0 , c k ] [0,c_k] [0,ck]中任一个值,同理如果 b k = c k b_k=c_k bk=ck a k a_k ak可取 [ 0 , c k ] [0,c_k] [0,ck]中任一个值,一共有 2 ( c k + 1 ) − 1 = 2 c k + 1 2(c_k+1)-1=2c_k+1 2(ck+1)1=2ck+1种情况。答案即为 ∏ k = 1 r ( 2 c k + 1 ) = τ ( n 2 ) \prod\limits_{k=1}^r(2c_k+1)=\tau(n^2) k=1r(2ck+1)=τ(n2)

(5)求证: n n n为正整数且满足 24 ∣ ( n + 1 ) 24\mid (n+1) 24(n+1) σ ( n ) \sigma(n) σ(n)一定能被 24 24 24整除。

证明:如果 24 ∣ ( n + 1 ) 24\mid (n+1) 24(n+1),那么 n n n可以写成 6 k − 1 6k-1 6k1的形式,且 2 ∤ n , 3 ∤ n 2\nmid n,3\nmid n 2n,3n。不难证明,集合 { x ∣ x = 6 k ± 1 , k ∈ N } \{x|x=6k\pm1,k\in \mathbf{N}\} {xx=6k±1,kN}对于乘法是封闭的,且这个集合覆盖了所有不能被 2 2 2 3 3 3整除的正整数。首先我们有引理:

L e m m a   1. ∀ n ∈ z + , n ≡ − 1   m o d   6 , s.t. ⁡ 6 ∣ σ ( n ) Lemma\space 1.\forall n\in\mathbf{z}^+,n\equiv -1\bmod 6,\operatorname{s.t.}6\mid \sigma(n) Lemma 1.nz+,n1mod6,s.t.6σ(n)
证明:设 n = 6 k − 1 n=6k-1 n=6k1,如果 n ∈ p r i m e n\in prime nprime,命题显然成立;如果 n ∉ p r i m e n\notin prime n/prime,则 n n n一定可以分解为形如 6 a + 1 6a+1 6a+1 6 b − 1 6b-1 6b1的乘积,那么对于每一对 ( d , n d )     ( d ∣ n ) (d,\frac{n}{d})\space\space\space(d\mid n) (d,dn)   (dn),都有 6 ∣ d + n d 6\mid d+\frac{n}{d} 6d+dn,即说明 6 ∣ ∑ d ∣ n , d ≤ ⌊ n ⌋ d + n d = σ ( n ) 6\mid \sum\limits_{d\mid n,d\leq\lfloor\sqrt n\rfloor}d+\frac{n}{d}=\sigma(n) 6dn,dn d+dn=σ(n)

类比 L e m m a   1 Lemma\space 1 Lemma 1的证明过程,现考虑证明原命题:
n = 6 k − 1 n=6k-1 n=6k1,如果 n ∈ p r i m e n\in prime nprime,命题显然成立;如果 n ∉ p r i m e n\notin prime n/prime,则 n n n一定可以分解为形如 6 a + 1 6a+1 6a+1 6 b − 1 6b-1 6b1的乘积,那么有 ( 6 a + 1 ) ( 6 b − 1 ) = 36 a b + 6 b − 6 a − 1 ≡ − 1   m o d   24 ⇒ 6 a b + ( b − a ) ≡ 0   m o d   4 (6a+1)(6b-1)=36ab+6b-6a-1\equiv-1\bmod 24\Rightarrow6ab+(b-a)\equiv0\bmod 4 (6a+1)(6b1)=36ab+6b6a11mod246ab+(ba)0mod4,说明 b − a b-a ba一定能被 2 2 2整除,考虑 a , b a,b a,b的取值情况:

( 1 ) a ≡ 1   m o d   4 , b ≡ 3   m o d   4 (1)a\equiv 1\bmod 4,b\equiv 3\bmod 4 (1)a1mod4,b3mod4
此时有 6 a b + b − a ≡ 0   m o d   4 6ab+b-a\equiv0\bmod 4 6ab+ba0mod4 a + b ≡ 0   m o d   4 a+b\equiv 0\bmod 4 a+b0mod4

( 2 ) a ≡ 3   m o d   4 , b ≡ 1   m o d   4 (2)a\equiv 3\bmod 4,b\equiv 1\bmod 4 (2)a3mod4,b1mod4
此时有 6 a b + b − a ≡ 0   m o d   4 6ab+b-a\equiv0\bmod 4 6ab+ba0mod4 a + b ≡ 0   m o d   4 a+b\equiv 0\bmod 4 a+b0mod4

( 3 ) a ≡ 1   m o d   4 , b ≡ 1   m o d   4 (3)a\equiv 1\bmod 4,b\equiv 1\bmod 4 (3)a1mod4,b1mod4
此时有 6 a b + b − a ≡ 2   m o d   4 6ab+b-a\equiv2\bmod 4 6ab+ba2mod4 a + b ≡ 2   m o d   4 a+b\equiv 2\bmod 4 a+b2mod4

( 4 ) a ≡ 3   m o d   4 , b ≡ 3   m o d   4 (4)a\equiv 3\bmod 4,b\equiv 3\bmod 4 (4)a3mod4,b3mod4
此时有 6 a b + b − a ≡ 2   m o d   4 6ab+b-a\equiv2\bmod 4 6ab+ba2mod4 a + b ≡ 2   m o d   4 a+b\equiv 2\bmod 4 a+b2mod4

所以 a , b a,b a,b两个数必有一个模 4 4 4 3 3 3,且另一个模 4 4 4 1 1 1。对于每一对 ( d , n d )     ( d ∣ n ) (d,\frac{n}{d})\space\space\space(d\mid n) (d,dn)   (dn),都有 d + n d = 6 a + 1 + 6 b − 1 = 6 ( a + b ) d+\frac{n}{d}=6a+1+6b-1=6(a+b) d+dn=6a+1+6b1=6(a+b),且 a + b ≡ 0   m o d   4 a+b\equiv 0\bmod 4 a+b0mod4,即 24 ∣ 6 ( a + b ) 24\mid 6(a+b) 246(a+b),说明 24 ∣ ∑ d ∣ n , d ≤ ⌊ n ⌋ d + n d = σ ( n ) 24\mid \sum\limits_{d\mid n,d\leq\lfloor\sqrt n\rfloor}d+\frac{n}{d}=\sigma(n) 24dn,dn d+dn=σ(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值