如何利用大数据软件进行家政服务的选址要素收集与分析
家政服务系统的研究越来越受到社会的重视,具有非常重要的意义。选址是家政服务系统得以蓬勃发展的关键环节。选址中,社会效益和经济效益是非常重要的。市场上的商铺供应量持续上升,无论类型、地段、铺型、设施,都给家政服务中心及其连锁分店提供了很大的选择余地。因选址不当而折戟商场的创业经营者比比皆是,可见选址在家政服务经营中的重要性。应该开阔思维,科学的,有技巧的选址,以便避免一些细节风险。下面就是需要了解的数据。
竞争的数据: 把目前家政店铺的开设地点都摸清楚,了解他们的客单价,做好竞争策略。
家政分布情况(数据来源:http://www.data-dance.com)
消费群体数据; 选择人口密度高,25-35岁的人群,在当地收入高、学历高、房价高的区域。
年龄比例图(数据来源:http://www.data-dance.com)
人口及小区分布数据: 要选择中、高档社区或居民小区,建店地址设在小区外的商业干道,但不能选择菜场、小商品市场等旁边,因人群杂乱,环境污染给店面形象带来不好的影响 在社区或居民小区稀少、分散的条件下,一定要尽量选址人口较稠密的区域。
周边业态数据:选择中、大型的商场、医院、肯德基等人群消费便利的附近。可以形成聚客点为门店带来生意。
交通数据:选择人群流动或居民上下班的必经之路,即有交通站台的附近; 选择人群步行交通不便之处,如果人口稠密的城区,要控制在步行15分钟内。
下面我就进行北京国贸商圈进行这些要素的数据采集及可视化。(数据来源:http://www.data-dance.com)。
消费群体数据:
如上图所示:
常住人口约是240万人,人口密度很高,居民人口约100万人,外地人口占一大部分。
区域内已婚人口占多数,占比是71%,已婚人口占比高。比较适合做家政服务生意。
大专及以上学历占比59.63%相对较多,高学历人群在新鲜事物上的接受程度以及自我学习能力具有良好的属性。
8K至19K 收入水平范围人群占多数,收入与消费是因果关系,有收入才会有消费,高收入人群消费趋于精品化、个性化消费,他们衣食住行都无忧。
商圈内私家车出行占比75%相对较高, 说明这里的车辆比较多,同时本地人群比较愿意为享受、便捷买单。
消费水平“高”的占多数,愿意消费才会有生意。
25至34岁占多数,这类人群大多有一定经济基础,且生活压力不会太大,愿意为享受生活消费。
看房价
国贸房价Top20分布图
通过上图看出房价排名最高的地方,说明这里的购买力比较强。
竞争的数据:
家政分布情况
上图是家政服务的门店分布情况,可以明显的看出这个区域的密集区与稀疏区。
人口及小区分布数据:
居民住宅分布
写字楼分布
可以通过以上几张图看出写字楼及住宅分布情况,我们可以选择写字楼或者住宅分布较密集的区域。
人口分布数据:
人口热力图
通过上图可以看出红框区域人口分布还是比较集中的,尽量把店铺开在人密集的地方。
周边业态数据:
知名餐饮分布图
商场分布图
上图可以看出红框区域业态好。
交通设施的数量及分布:
交通设施数量及分布情况
通过上图可以看出这个区域的交通设施是比较丰富的,交通比较便利。
总结:最后还可以把以上数据叠加整体分析。
叠加人口热力图、交通分布图、写字楼商场分布图
上图看出红框区域各项数据都比较密集适合开店。
您还可以基于常驻客户画像、民用住宅及房价、周边餐饮业态、周边医疗相关业态、周边教育培训相关业态、周边宠物相关业态、周边景区业态、周边交通相关业态、周边公司分布业态、周边商务住宿业态、周边生活服务业态、周边体育休闲业态、周边政府机构业态、周边公共设施业态,部分消费类提供有人均消费和评分等信息继续分析,小编就不逐一放图说明了,有兴趣您可以自己去看下。