Hive初认识

Hive初认识


文章目录

  • Hive初认识
    • Hive是什么
      • 概念
      • 本质
    • Hive的优缺点
      • 优点
      • 缺点
    • Hive的架构原理


本文主要是介绍 Hive的基本概念,包括Hive是什么、优缺点、架构原理。

Hive是什么

概念

  • 起源:

Hive:由Facebook开源用于解决海量结构化日志的数据统计工具。

  • 概念

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。

  • 官网介绍

Apache Hive ™ 是一个分布式容错数据仓库系统,支持大规模分析,并使用 SQL 促进读取、写入和管理驻留在分布式存储中的 PB 级数据。

本质

Hive本质是 将HQL转化成MapReduce程序

  • Hive处理的数据存储在HDFS

  • Hive分析数据底层的实现是MapReduce

  • 执行程序运行在Yarn上

Hive的优缺点

优点

  • 操作接口采用 类SQL 语法,提供快速开发的能力(简单、容易上手)。

  • 避免了去写MapReduce,减少开发人员的学习成本。

  • Hive的 执行延迟比较高,因此Hive常用于 数据分析,对实时性要求不高的场合。

  • Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。

  • Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。

缺点

  • Hive的HQL表达能力有限

    • 迭代式算法无法表达
    • 数据挖掘方面不擅长,由于MapReduce数据处理流程的限制,效率更高的算法却无法实现。
  • Hive的效率比较低

    • Hive自动生成的MapReduce作业,通常情况下不够智能化
    • Hive调优比较困难,粒度较粗

Hive的架构原理

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JkbhpRlO-1682063353025)(assets/01.png)]

(1)用户接口:Client

CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)

(2)元数据:Metastore

  • 元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;

默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore

(3)Hadoop

使用HDFS进行存储,使用MapReduce进行计算。

(4)驱动器:Driver

  • 解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
  • 编译器(Physical Plan):将AST编译生成逻辑执行计划。
  • 优化器(Query Optimizer):对逻辑执行计划进行优化。
  • 执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。

全文结束!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值