Hive初认识
文章目录
- Hive初认识
- Hive是什么
- 概念
- 本质
- Hive的优缺点
- 优点
- 缺点
- Hive的架构原理
本文主要是介绍 Hive的基本概念,包括Hive是什么、优缺点、架构原理。
Hive是什么
概念
- 起源:
Hive:由Facebook开源用于解决海量结构化日志的数据统计工具。
- 概念
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。
- 官网介绍
Apache Hive ™ 是一个分布式容错数据仓库系统,支持大规模分析,并使用 SQL 促进读取、写入和管理驻留在分布式存储中的 PB 级数据。
本质
Hive本质是
将HQL转化成MapReduce程序
-
Hive处理的数据存储在HDFS
-
Hive分析数据底层的实现是MapReduce
-
执行程序运行在Yarn上
Hive的优缺点
优点
-
操作接口采用
类SQL
语法,提供快速开发的能力(简单、容易上手)。 -
避免了去写MapReduce
,减少开发人员的学习成本。 -
Hive的
执行延迟比较高
,因此Hive常用于数据分析
,对实时性要求不高的场合。 -
Hive
优势在于处理大数据
,对于处理小数据没有优势,因为Hive的执行延迟比较高。 -
Hive支持
用户自定义函数
,用户可以根据自己的需求来实现自己的函数。
缺点
-
Hive的
HQL表达能力有限
- 迭代式算法无法表达
- 数据挖掘方面不擅长,由于MapReduce数据处理流程的限制,效率更高的算法却无法实现。
-
Hive的
效率比较低
- Hive自动生成的MapReduce作业,通常情况下不够智能化
- Hive调优比较困难,粒度较粗
Hive的架构原理
(1)用户接口
:Client
CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)
(2)元数据
:Metastore
- 元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore
(3)Hadoop
使用HDFS进行存储,使用MapReduce进行计算。
(4)驱动器
:Driver
解析器(SQL Parser)
:将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。编译器(Physical Plan)
:将AST编译生成逻辑执行计划。优化器(Query Optimizer)
:对逻辑执行计划进行优化。执行器(Execution)
:把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。
Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
全文结束!!!