离焦与焦深

离焦

在这里插入图片描述
图中虚线是新的波前,实线是旧的波前
根据已经推导出的球面波公式,可以分别写出它们两个的公式
Original wavefront: W o ( x , y ) = x 2 + y 2 2 ( R − ε z ) 2 W_{o}(x,y)=\frac{x^{2}+y^{2}}{2(R-\varepsilon_{z})^2} Wo(x,y)=2(Rεz)2x2+y2
New wavefront: W N ( x , y ) = x 2 + y 2 2 R 2 W_N(x,y)=\frac{x^2+y^2}{2R^2} WN(x,y)=2R2x2+y2
这里需要注意的是ε_z本身就是逆着光路方向的, ε z < 0 \varepsilon_{z}<0 εz<0,离焦:
Δ W ( x , y ) = W N ( x , y ) − W o ( x , y ) \Delta W(x,y)=W_N(x,y)-W_o(x,y) ΔW(x,y)=WN(x,y)Wo(x,y)
Δ W ( x , y ) = − ε z ⋅ x 2 + y 2 2 R 2 \Delta W(x,y)=-\varepsilon_z\cdot\frac{x^2+y^2}{2R^2} ΔW(x,y)=εz2R2x2+y2
现在这种情况是新的波前在旧的波前前面,那么 Δ W ( x , y ) \Delta W(x,y) ΔW(x,y)就是正的
那么为什么 δ Δ W / n \delta\Delta W/n δΔW/n是个负的,为什么它的增量是负的?
在这里插入图片描述

由图可知,红线在黑线的后面,所以是个负的

焦深

在这里插入图片描述

Δ W ( x , y ) = − ε z ⋅ x 2 + y 2 2 R 2 x 2 + y 2 = ( D E P / 2 ) 2 x 2 + y 2 2 R 2 = D E P 2 8 R 2 = D E P 2 8 f 2 = 1 8 ( F # ) 2 \Delta W(x,y)=-\varepsilon_{z}\cdot\frac{x^{2}+y^{2}}{2R^2}\\x^{2}+y^{2}=(D_{EP}/2)^{2}\\\frac{x^2+y^2}{2R^2}=\frac{D_{EP}^2}{8R^2}=\frac{D_{EP}^2}{8f^2}=\frac1{8(F^\#)^2} ΔW(x,y)=εz2R2x2+y2x2+y2=(DEP/2)22R2x2+y2=8R2DEP2=8f2DEP2=8(F#)21
所以,
Δ W ( x , y ) = − ε z ⋅ 1 8 ( F # ) 2 \Delta W(x,y)=-\varepsilon_z\cdot\frac1{8(F^\#)^2} ΔW(x,y)=εz8(F#)21

根据瑞丽判据

瑞利认为,实际波面与参考球面波之间的最大波像差不超过 入/4时 此波面可以看作是无缺陷的,此判断为瑞利判断

Δ W ( x , y ) = Δ W d e f o c u s = ± λ 4 = ± ε z 8 ( F # ) 2 \Delta W(x,y)=\Delta W_{defocus}=\pm\frac\lambda4=\pm\frac{\varepsilon_z}{8(F^\#)^2} ΔW(x,y)=ΔWdefocus=±4λ=±8(F#)2εz
可得焦深,
ε z = ± 2 λ ( F # ) 2 \varepsilon_z=\pm2\lambda(F^\#)^2 εz=±2λ(F#)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Su!!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值