离焦
图中虚线是新的波前,实线是旧的波前
根据已经推导出的球面波公式,可以分别写出它们两个的公式
Original wavefront:
W
o
(
x
,
y
)
=
x
2
+
y
2
2
(
R
−
ε
z
)
2
W_{o}(x,y)=\frac{x^{2}+y^{2}}{2(R-\varepsilon_{z})^2}
Wo(x,y)=2(R−εz)2x2+y2
New wavefront:
W
N
(
x
,
y
)
=
x
2
+
y
2
2
R
2
W_N(x,y)=\frac{x^2+y^2}{2R^2}
WN(x,y)=2R2x2+y2
这里需要注意的是ε_z本身就是逆着光路方向的,
ε
z
<
0
\varepsilon_{z}<0
εz<0,离焦:
Δ
W
(
x
,
y
)
=
W
N
(
x
,
y
)
−
W
o
(
x
,
y
)
\Delta W(x,y)=W_N(x,y)-W_o(x,y)
ΔW(x,y)=WN(x,y)−Wo(x,y)
Δ
W
(
x
,
y
)
=
−
ε
z
⋅
x
2
+
y
2
2
R
2
\Delta W(x,y)=-\varepsilon_z\cdot\frac{x^2+y^2}{2R^2}
ΔW(x,y)=−εz⋅2R2x2+y2
现在这种情况是新的波前在旧的波前前面,那么
Δ
W
(
x
,
y
)
\Delta W(x,y)
ΔW(x,y)就是正的
那么为什么
δ
Δ
W
/
n
\delta\Delta W/n
δΔW/n是个负的,为什么它的增量是负的?
由图可知,红线在黑线的后面,所以是个负的
焦深
Δ
W
(
x
,
y
)
=
−
ε
z
⋅
x
2
+
y
2
2
R
2
x
2
+
y
2
=
(
D
E
P
/
2
)
2
x
2
+
y
2
2
R
2
=
D
E
P
2
8
R
2
=
D
E
P
2
8
f
2
=
1
8
(
F
#
)
2
\Delta W(x,y)=-\varepsilon_{z}\cdot\frac{x^{2}+y^{2}}{2R^2}\\x^{2}+y^{2}=(D_{EP}/2)^{2}\\\frac{x^2+y^2}{2R^2}=\frac{D_{EP}^2}{8R^2}=\frac{D_{EP}^2}{8f^2}=\frac1{8(F^\#)^2}
ΔW(x,y)=−εz⋅2R2x2+y2x2+y2=(DEP/2)22R2x2+y2=8R2DEP2=8f2DEP2=8(F#)21
所以,
Δ
W
(
x
,
y
)
=
−
ε
z
⋅
1
8
(
F
#
)
2
\Delta W(x,y)=-\varepsilon_z\cdot\frac1{8(F^\#)^2}
ΔW(x,y)=−εz⋅8(F#)21
根据瑞丽判据
瑞利认为,实际波面与参考球面波之间的最大波像差不超过 入/4时 此波面可以看作是无缺陷的,此判断为瑞利判断
Δ
W
(
x
,
y
)
=
Δ
W
d
e
f
o
c
u
s
=
±
λ
4
=
±
ε
z
8
(
F
#
)
2
\Delta W(x,y)=\Delta W_{defocus}=\pm\frac\lambda4=\pm\frac{\varepsilon_z}{8(F^\#)^2}
ΔW(x,y)=ΔWdefocus=±4λ=±8(F#)2εz
可得焦深,
ε
z
=
±
2
λ
(
F
#
)
2
\varepsilon_z=\pm2\lambda(F^\#)^2
εz=±2λ(F#)2