Zernike多项式

Zernike多项式用于拟合波面,进行误差分析与误差消除
性质:
1.在连续单位圆内,Zernike多项式正交
∫ 0 1 ∫ 0 2 π Z n l ⋅ Z n l ⋅ ρ d ρ d θ = π ( 1 + δ l 0 ) 2 ( n + 1 ) δ n n ′ \int_0^1\int_0^{2\pi}Z_n^l\cdot Z_n^l\cdot\rho d\rho d\theta=\frac{\pi(1+\delta_{l0})}{2(n+1)}\delta_{nn^{\prime}} 0102πZnlZnlρdρdθ=2(n+1)π(1+δl0)δnn
其中, δ n n ′ = { 1 , n = n ′ 0 , n ≠ n ′ , δ l 0 = { 1 , l = 0 0 , l ≠ 0 \delta_{nn'}=\left\{\begin{matrix}1,n=n'\\0,n\neq n'\end{matrix}\right., \delta_{l0}=\left\{\begin{matrix}1,l=0\\0,l\neq0\end{matrix}\right. δnn={1,n=n0,n=n,δl0={1,l=00,l=0
2.每一项都可以写为 Z n l = R n l ( ρ ) . e i l θ Z_{n}^{l}=R_{n}^{l}(\rho).e^{il\theta} Znl=Rnl(ρ).eilθ
3.回转对称性: e i l ( θ + α ) = e i l θ ⋅ e i l α e^{il(\theta+\alpha)}=e^{il\theta}\cdot e^{il\alpha} eil(θ+α)=eilθeilα
波像差∆w可以用泽尼克多项式的前n项表示,并且泽尼克多项式中每项都对像差自带补偿
Δ w ( ρ , θ ) = ∑ j = 1 J a j u j ′ ( ρ , θ ) \Delta w(\rho,\theta)=\sum_{j=1}^Ja_ju_j^{\prime}(\rho,\theta) Δw(ρ,θ)=j=1Jajuj(ρ,θ)
π ( 1 + δ l 0 ) 2 ( n + 1 ) \frac{\pi(1+\delta_{l0})}{2(n+1)} 2(n+1)π(1+δl0)是凑正交项导出来的系数

Zernike多项式与赛德尔像差的关系:
Δ w ( ρ , θ ′ ) = Z 0 − Z 3 + Z 8 + ρ ( Z 1 − 2 Z 6 ) 2 + ( Z 2 − 2 Z 7 ) 2 × cos ⁡ [ θ ′ − tan ⁡ − 1 ( Z 2 − 2 Z 7 Z 1 − 2 Z 6 ) ] + ρ 2 ( 2 Z 3 − 6 Z 8 ± Z 4 2 + Z 5 2 ) ± 2 ρ 2 Z 4 2 + Z 5 2 c o s 2 [ θ ′ − 1 2 tan ⁡ − 1 ( Z 5 Z 4 ) ] + 3 ρ 2 Z 6 2 + Z 7 2 cos ⁡ [ θ ′ − 1 2 tan ⁡ − 1 ( Z 7 Z 6 ) ] + 6 ρ 4 Z 8 \begin{gathered} \Delta w(\rho,\theta^{\prime})=Z_0-Z_3+Z_8 \\ +\rho\sqrt{(Z_1-2Z_6)^2+(Z_2-2Z_7)^2}\times\cos\left[\theta^{\prime}-\tan^{-1}\left(\frac{Z_2-2Z_7}{Z_1-2Z_6}\right)\right] \\ +\rho^2\left(2Z_3-6Z_8\pm\sqrt{Z_4^2+Z_5^2}\right) \\ \pm2\rho^{2}\sqrt{Z_{4}^{2}+Z_{5}^{2}}cos^{2}\left[\theta^{\prime}-\frac{1}{2}\tan^{-1}\left(\frac{Z_{5}}{Z_{4}}\right)\right] \\ +3\rho^{2}\sqrt{Z_{6}^{2}+Z_{7}^{2}}\cos\left[\theta^{\prime}-\frac{1}{2}\tan^{-1}\left(\frac{Z_{7}}{Z_{6}}\right)\right] \\ \\ +6\rho^4Z_8 \end{gathered} Δw(ρ,θ)=Z0Z3+Z8+ρ(Z12Z6)2+(Z22Z7)2 ×cos[θtan1(Z12Z6Z22Z7)]+ρ2(2Z36Z8±Z42+Z52 )±2ρ2Z42+Z52 cos2[θ21tan1(Z4Z5)]+3ρ2Z62+Z72 cos[θ21tan1(Z6Z7)]+6ρ4Z8
其中:
Z 0 − Z 3 + Z 8 整像平移 ρ ( Z 1 − 2 Z 6 ) 2 + ( Z 2 − 2 Z 7 ) 2 × cos ⁡ [ θ ′ − tan ⁡ − 1 ( Z 2 − 2 Z 7 Z 1 − 2 Z 6 ) ] 倾斜 ρ 2 ( 2 Z 3 − 6 Z 8 ± Z 4 2 + Z 5 2 ) 离焦 ± 2 ρ 2 Z 4 2 + Z 5 2 c o s 2 [ θ ′ − 1 2 tan ⁡ − 1 ( Z 5 Z 4 ) ] 像散 3 ρ 2 Z 6 2 + Z 7 2 cos ⁡ [ θ ′ − 1 2 tan ⁡ − 1 ( Z 7 Z 6 ) ] 慧差 6 ρ 4 Z 8 球差 \begin{array}{|c|c|}\hline Z_0-Z_3+Z_8&\text{整像平移}\\\hline\rho\sqrt{(Z_1-2Z_6)^2+(Z_2-2Z_7)^2}\times\cos\left[\theta^{\prime}-\tan^{-1}\left(\frac{Z_2-2Z_7}{Z_1-2Z_6}\right)\right]&\text{倾斜}\\\hline\rho^2\left(2Z_3-6Z_8\pm\sqrt{Z_4^2+Z_5^2}\right)&\text{离焦}\\\hline\pm2\rho^2\sqrt{Z_4^2+Z_5^2}cos^2\left[\theta^{\prime}-\frac{1}{2}\tan^{-1}\left(\frac{Z_5}{Z_4}\right)\right]&\text{像散}\\\hline3\rho^2\sqrt{Z_6^2+Z_7^2}\cos\left[\theta^{\prime}-\frac{1}{2}\tan^{-1}\left(\frac{Z_7}{Z_6}\right)\right]&\text{慧差}\\\hline6\rho^4Z_8&\text{球差}\\\hline\end{array} Z0Z3+Z8ρ(Z12Z6)2+(Z22Z7)2 ×cos[θtan1(Z12Z6Z22Z7)]ρ2(2Z36Z8±Z42+Z52 )±2ρ2Z42+Z52 cos2[θ21tan1(Z4Z5)]3ρ2Z62+Z72 cos[θ21tan1(Z6Z7)]6ρ4Z8整像平移倾斜离焦像散慧差球差
±号像散和离焦中的相反,离焦取绝对值较少的那一个正号或负号

附:
strehl ratio>0.8,就认为系统接近衍射极限
s t r e h l r a t i o = 1 − ( 2 π σ ) 2 strehlratio=1-(2\pi\sigma)^2 strehlratio=1(2πσ)2
marechal判据(现代光学系统都用这个判据):系统波前偏差应小于λ/14,即小于1nm(RMS)
σ ≤ λ / 14 \sigma\leq\lambda/14 σλ/14
σ = R M S 总 = ∑ i = 1 n R M S i 2 \sigma=RMS_\textit{总}=\sqrt{\sum_{i=1}^nRMS_i^2} σ=RMS=i=1nRMSi2

例题:
13年第一题

1)由Zernike各项系数得到波像差:
Δ W = 2 ( 1 − 6 ρ 2 + 6 ρ 4 ) + 3 ρ ( − 2 + 3 ρ 2 ) cos ⁡ θ + 4 ( − 1 + 2 ρ 2 ) Δ W = 12 ρ 4 − 8 ρ 2 + 9 ρ 3 cos ⁡ θ − 6 ρ cos ⁡ θ − 2 \Delta W=2(1-6\rho^2+6\rho^4)+3\rho(-2+3\rho^2)\cos\theta+4(-1+2\rho^2)\\\Delta W=12\rho^4-8\rho^2+9\rho^3\cos\theta-6\rho\cos\theta-2 ΔW=2(16ρ2+6ρ4)+3ρ(2+3ρ2)cosθ+4(1+2ρ2)ΔW=12ρ48ρ2+9ρ3cosθ6ρcosθ2
∴-6倾斜,-8离焦,0像散,9慧差,12球差
2)由Zernike多项式的正交性,要使Strehl ratio最大,离焦与球差的分配与Zernike多项式的第八项相同,有:
W 020 = − W 040 = − 4 w a v e s W_{020}=-W_{040}=-4waves W020=W040=4waves

消除高阶项(即进行适当的倾斜和散焦),可以最小化该阶的均方根波前误差。通过分析Zernike第8项,可知每出现一个波长的三级球差,就需要减去波前的离焦项,这样可使rms波前误差最小,从而找到衍射焦点。

3)
W 020 = − 3 2 W 040 = − 6 w a v e s W_{020}=-\frac32W_{040}=-6waves W020=23W040=6waves
4)由Zernike多项式的正交性,要使Strehl ratio最大,倾斜与慧差的分配与Zernike多项式的第六、七项相同,有:
x t i l t = − 2 3 p r i x c o m a = − 14 3 w a v e s y t i l t = − 2 3 p r i x c o m a = 14 3 w a v e s x_{tilt}=-\frac{2}{3}pri x coma=-\frac{14}{3}waves\\y_{tilt}=-\frac{2}{3}pri x coma=\frac{14}{3}waves xtilt=32prixcoma=314wavesytilt=32prixcoma=314waves
附:
前9项Zernike多项式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Su!!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值