Zernike多项式用于拟合波面,进行误差分析与误差消除
性质:
1.在连续单位圆内,Zernike多项式正交
∫
0
1
∫
0
2
π
Z
n
l
⋅
Z
n
l
⋅
ρ
d
ρ
d
θ
=
π
(
1
+
δ
l
0
)
2
(
n
+
1
)
δ
n
n
′
\int_0^1\int_0^{2\pi}Z_n^l\cdot Z_n^l\cdot\rho d\rho d\theta=\frac{\pi(1+\delta_{l0})}{2(n+1)}\delta_{nn^{\prime}}
∫01∫02πZnl⋅Znl⋅ρdρdθ=2(n+1)π(1+δl0)δnn′
其中,
δ
n
n
′
=
{
1
,
n
=
n
′
0
,
n
≠
n
′
,
δ
l
0
=
{
1
,
l
=
0
0
,
l
≠
0
\delta_{nn'}=\left\{\begin{matrix}1,n=n'\\0,n\neq n'\end{matrix}\right., \delta_{l0}=\left\{\begin{matrix}1,l=0\\0,l\neq0\end{matrix}\right.
δnn′={1,n=n′0,n=n′,δl0={1,l=00,l=0 。
2.每一项都可以写为
Z
n
l
=
R
n
l
(
ρ
)
.
e
i
l
θ
Z_{n}^{l}=R_{n}^{l}(\rho).e^{il\theta}
Znl=Rnl(ρ).eilθ
3.回转对称性:
e
i
l
(
θ
+
α
)
=
e
i
l
θ
⋅
e
i
l
α
e^{il(\theta+\alpha)}=e^{il\theta}\cdot e^{il\alpha}
eil(θ+α)=eilθ⋅eilα
波像差∆w可以用泽尼克多项式的前n项表示,并且泽尼克多项式中每项都对像差自带补偿
Δ
w
(
ρ
,
θ
)
=
∑
j
=
1
J
a
j
u
j
′
(
ρ
,
θ
)
\Delta w(\rho,\theta)=\sum_{j=1}^Ja_ju_j^{\prime}(\rho,\theta)
Δw(ρ,θ)=j=1∑Jajuj′(ρ,θ)
π
(
1
+
δ
l
0
)
2
(
n
+
1
)
\frac{\pi(1+\delta_{l0})}{2(n+1)}
2(n+1)π(1+δl0)是凑正交项导出来的系数
Zernike多项式与赛德尔像差的关系:
Δ
w
(
ρ
,
θ
′
)
=
Z
0
−
Z
3
+
Z
8
+
ρ
(
Z
1
−
2
Z
6
)
2
+
(
Z
2
−
2
Z
7
)
2
×
cos
[
θ
′
−
tan
−
1
(
Z
2
−
2
Z
7
Z
1
−
2
Z
6
)
]
+
ρ
2
(
2
Z
3
−
6
Z
8
±
Z
4
2
+
Z
5
2
)
±
2
ρ
2
Z
4
2
+
Z
5
2
c
o
s
2
[
θ
′
−
1
2
tan
−
1
(
Z
5
Z
4
)
]
+
3
ρ
2
Z
6
2
+
Z
7
2
cos
[
θ
′
−
1
2
tan
−
1
(
Z
7
Z
6
)
]
+
6
ρ
4
Z
8
\begin{gathered} \Delta w(\rho,\theta^{\prime})=Z_0-Z_3+Z_8 \\ +\rho\sqrt{(Z_1-2Z_6)^2+(Z_2-2Z_7)^2}\times\cos\left[\theta^{\prime}-\tan^{-1}\left(\frac{Z_2-2Z_7}{Z_1-2Z_6}\right)\right] \\ +\rho^2\left(2Z_3-6Z_8\pm\sqrt{Z_4^2+Z_5^2}\right) \\ \pm2\rho^{2}\sqrt{Z_{4}^{2}+Z_{5}^{2}}cos^{2}\left[\theta^{\prime}-\frac{1}{2}\tan^{-1}\left(\frac{Z_{5}}{Z_{4}}\right)\right] \\ +3\rho^{2}\sqrt{Z_{6}^{2}+Z_{7}^{2}}\cos\left[\theta^{\prime}-\frac{1}{2}\tan^{-1}\left(\frac{Z_{7}}{Z_{6}}\right)\right] \\ \\ +6\rho^4Z_8 \end{gathered}
Δw(ρ,θ′)=Z0−Z3+Z8+ρ(Z1−2Z6)2+(Z2−2Z7)2×cos[θ′−tan−1(Z1−2Z6Z2−2Z7)]+ρ2(2Z3−6Z8±Z42+Z52)±2ρ2Z42+Z52cos2[θ′−21tan−1(Z4Z5)]+3ρ2Z62+Z72cos[θ′−21tan−1(Z6Z7)]+6ρ4Z8
其中:
Z
0
−
Z
3
+
Z
8
整像平移
ρ
(
Z
1
−
2
Z
6
)
2
+
(
Z
2
−
2
Z
7
)
2
×
cos
[
θ
′
−
tan
−
1
(
Z
2
−
2
Z
7
Z
1
−
2
Z
6
)
]
倾斜
ρ
2
(
2
Z
3
−
6
Z
8
±
Z
4
2
+
Z
5
2
)
离焦
±
2
ρ
2
Z
4
2
+
Z
5
2
c
o
s
2
[
θ
′
−
1
2
tan
−
1
(
Z
5
Z
4
)
]
像散
3
ρ
2
Z
6
2
+
Z
7
2
cos
[
θ
′
−
1
2
tan
−
1
(
Z
7
Z
6
)
]
慧差
6
ρ
4
Z
8
球差
\begin{array}{|c|c|}\hline Z_0-Z_3+Z_8&\text{整像平移}\\\hline\rho\sqrt{(Z_1-2Z_6)^2+(Z_2-2Z_7)^2}\times\cos\left[\theta^{\prime}-\tan^{-1}\left(\frac{Z_2-2Z_7}{Z_1-2Z_6}\right)\right]&\text{倾斜}\\\hline\rho^2\left(2Z_3-6Z_8\pm\sqrt{Z_4^2+Z_5^2}\right)&\text{离焦}\\\hline\pm2\rho^2\sqrt{Z_4^2+Z_5^2}cos^2\left[\theta^{\prime}-\frac{1}{2}\tan^{-1}\left(\frac{Z_5}{Z_4}\right)\right]&\text{像散}\\\hline3\rho^2\sqrt{Z_6^2+Z_7^2}\cos\left[\theta^{\prime}-\frac{1}{2}\tan^{-1}\left(\frac{Z_7}{Z_6}\right)\right]&\text{慧差}\\\hline6\rho^4Z_8&\text{球差}\\\hline\end{array}
Z0−Z3+Z8ρ(Z1−2Z6)2+(Z2−2Z7)2×cos[θ′−tan−1(Z1−2Z6Z2−2Z7)]ρ2(2Z3−6Z8±Z42+Z52)±2ρ2Z42+Z52cos2[θ′−21tan−1(Z4Z5)]3ρ2Z62+Z72cos[θ′−21tan−1(Z6Z7)]6ρ4Z8整像平移倾斜离焦像散慧差球差
±号像散和离焦中的相反,离焦取绝对值较少的那一个正号或负号
附:
strehl ratio>0.8,就认为系统接近衍射极限
s
t
r
e
h
l
r
a
t
i
o
=
1
−
(
2
π
σ
)
2
strehlratio=1-(2\pi\sigma)^2
strehlratio=1−(2πσ)2
marechal判据(现代光学系统都用这个判据):系统波前偏差应小于λ/14,即小于1nm(RMS)
σ
≤
λ
/
14
\sigma\leq\lambda/14
σ≤λ/14
σ
=
R
M
S
总
=
∑
i
=
1
n
R
M
S
i
2
\sigma=RMS_\textit{总}=\sqrt{\sum_{i=1}^nRMS_i^2}
σ=RMS总=i=1∑nRMSi2
例题:
1)由Zernike各项系数得到波像差:
Δ
W
=
2
(
1
−
6
ρ
2
+
6
ρ
4
)
+
3
ρ
(
−
2
+
3
ρ
2
)
cos
θ
+
4
(
−
1
+
2
ρ
2
)
Δ
W
=
12
ρ
4
−
8
ρ
2
+
9
ρ
3
cos
θ
−
6
ρ
cos
θ
−
2
\Delta W=2(1-6\rho^2+6\rho^4)+3\rho(-2+3\rho^2)\cos\theta+4(-1+2\rho^2)\\\Delta W=12\rho^4-8\rho^2+9\rho^3\cos\theta-6\rho\cos\theta-2
ΔW=2(1−6ρ2+6ρ4)+3ρ(−2+3ρ2)cosθ+4(−1+2ρ2)ΔW=12ρ4−8ρ2+9ρ3cosθ−6ρcosθ−2
∴-6倾斜,-8离焦,0像散,9慧差,12球差
2)由Zernike多项式的正交性,要使Strehl ratio最大,离焦与球差的分配与Zernike多项式的第八项相同,有:
W
020
=
−
W
040
=
−
4
w
a
v
e
s
W_{020}=-W_{040}=-4waves
W020=−W040=−4waves
消除高阶项(即进行适当的倾斜和散焦),可以最小化该阶的均方根波前误差。通过分析Zernike第8项,可知每出现一个波长的三级球差,就需要减去波前的离焦项,这样可使rms波前误差最小,从而找到衍射焦点。
3)
W
020
=
−
3
2
W
040
=
−
6
w
a
v
e
s
W_{020}=-\frac32W_{040}=-6waves
W020=−23W040=−6waves
4)由Zernike多项式的正交性,要使Strehl ratio最大,倾斜与慧差的分配与Zernike多项式的第六、七项相同,有:
x
t
i
l
t
=
−
2
3
p
r
i
x
c
o
m
a
=
−
14
3
w
a
v
e
s
y
t
i
l
t
=
−
2
3
p
r
i
x
c
o
m
a
=
14
3
w
a
v
e
s
x_{tilt}=-\frac{2}{3}pri x coma=-\frac{14}{3}waves\\y_{tilt}=-\frac{2}{3}pri x coma=\frac{14}{3}waves
xtilt=−32prixcoma=−314wavesytilt=−32prixcoma=314waves
附: