球差与离焦

在这里插入图片描述
球差

  1. 边缘光线交点到高斯像面的距离LAmax及高斯像面的大小TAmax
  2. 最小弥散斑大小及其到高斯像面的距离εz
  3. 焦散面长度

① 加入焦散之后的波像差:
Δ w = W 040 ρ 4 + W 020 ρ 2 \Delta w=W_{040} \rho^{4}+W_{020} \rho^{2} Δw=W040ρ4+W020ρ2
W 020 = − ε z r 2 2 R 2 W_{020}=-\varepsilon_z\frac{r^2}{2R^2} W020=εz2R2r2
LA边缘光线到像点 ρ m a x = ± 1 , n = 1 \rho_{max}=\pm1, n=1 ρmax=±1,n=1(忽略离焦)
L A ρ m a x = − R 2 r 2 ρ m a x ⋅ ∂ Δ w ∂ ρ m a x LA_{\rho_{max}}=-\frac{R^2}{r^2\rho_{max}}\cdot\frac{\partial\Delta w}{\partial\rho_{max}} LAρmax=r2ρmaxR2ρmaxΔw
= − R 2 r 2 ρ m a x ⋅ 4 W 040 ⋅ ρ m a x 3 =-\frac{R^2}{r^2\rho_{max}}\cdot4W_{040}\cdot\rho_{max}^3 =r2ρmaxR24W040ρmax3
= − 4 R 2 r 2 ⋅ W 040 =-\frac{4R^2}{r^2}\cdot W_{040} =r24R2W040
T A = − R n r ⋅ ∂ Δ w ∂ ρ TA=-{\frac{R}{nr}}\cdot{\frac{\partial\Delta w}{\partial\rho}} TA=nrRρΔw得:
∣ T A m a x ∣ = 4 R r ⋅ W 040 |TA_{max}|=4\frac{R}{r}\cdot W_{040} TAmax=4rRW040
高斯像面大小为:
D G = 2 ∣ T A m a x ∣ = 8 R r ⋅ W 040 D_{G}=2|TA_{max}|=8\frac{R}{r}\cdot W_{040} DG=2∣TAmax=8rRW040
② 引入离焦找最小弥散斑
T A ρ z = − R n r ⋅ ∂ Δ w ∂ ρ z TA_{\rho_z}=-\frac{R}{nr}\cdot\frac{\partial\Delta w}{\partial\rho_z} TAρz=nrRρzΔw
= − R n r ( 4 ρ z 3 W 040 + 2 ρ z W 020 ) =-\frac{R}{nr}(4\rho_{z}^{3}W_{040}+2\rho_{z}W_{020}) =nrR(4ρz3W040+2ρzW020)
∂ T A ρ z ∂ ρ z = − R n r ( 12 ρ z 2 W 040 + 2 W 020 ) = 0 \frac{\partial TA_{\rho_z}}{\partial\rho_z}=-\frac{R}{nr}\left(12\rho_z^2W_{040}+2W_{020}\right)=0 ρzTAρz=nrR(12ρz2W040+2W020)=0
ρ z = − W 020 6 W 040 \rho_z=\sqrt{-\frac{W_{020}}{6W_{040}}} ρz=6W040W020
为保证边缘光线与焦散面相交,有 ∣ T A ρ z ∣ = ∣ T A ρ m a x ∣ , ρ m a x = − 1 , ρ = ρ z \left|TA_{\rho_{z}}\right|=\left|TA_{\rho_{max}}\right|, \rho_{max}=-1, \rho=\rho_{z} TAρz=TAρmax,ρmax=1,ρ=ρz
所求TA位于y轴上方,所以有:

− R n r ( 4 ρ z 3 W 040 + 2 ρ z W 020 ) = − R n r ( 4 ρ m a x 3 W 040 + 2 ρ m a x W 020 ) = R n r ( 4 W 040 + 2 W 020 ) -\frac R{nr}(4\rho_z^3W_{040}+2\rho_zW_{020})=-\frac R{nr}(4\rho_{max}^3W_{040}+2\rho_{max}W_{020})=\frac R{nr}(4W_{040}+2W_{020}) nrR(4ρz3W040+2ρzW020)=nrR(4ρmax3W040+2ρmaxW020)=nrR(4W040+2W020)

带入 ρ z = − W 020 6 W 040 \rho_z=\sqrt{-\frac{W_{020}}{6W_{040}}} ρz=6W040W020 ,有 W 020 W 040 = − 3 2 , ρ z = 1 2 \frac{W_{020}}{W_{040}}=-\frac{3}{2}, \rho_{z}=\frac{1}{2} W040W020=23,ρz=21,所以有:

T A ρ z = R n r W 040 TA_{\rho_z}=\frac{R}{nr}W_{040} TAρz=nrRW040

最小弥散斑大小 D = 2 ∣ T A ρ z ∣ D=2|TA_{\rho_{z}}| D=2∣TAρz

W 020 = ε z r 2 2 R 2 = − 3 2 W 040 ε z = − 3 R 2 r 2 W 040 W_{020}=\varepsilon_{z}\frac{r^{2}}{2R^{2}}=-\frac{3}{2}W_{040}\\\varepsilon_{z}=-3\frac{R^{2}}{r^{2}}W_{040} W020=εz2R2r2=23W040εz=3r2R2W040

L A m a x = − 4 R 2 r 2 ρ m a x ⋅ W 040 LA_{max}=-\frac{4R^{2}}{r^{2}\rho_{max}}\cdot W_{040} LAmax=r2ρmax4R2W040得:

ε z = 3 4 L A m a x \varepsilon_z=\frac{3}{4}LA_{max} εz=43LAmax
ε z \varepsilon_z εz即最小弥散斑到高斯像面的距离。

③ 焦散面对应最大弥散斑,根据 T A ρ m a x = − R n r ⋅ ∂ Δ w ∂ ρ m a x = − R n r ( 4 ρ m a x 3 W 040 + 2 ρ m a x W 020 ) TA_{\rho_{max}}=-\frac{R}{nr}\cdot\frac{\partial\Delta w}{\partial\rho_{max}}=-\frac{R}{nr}(4\rho_{max}^{3}W_{040}+2\rho_{max}W_{020}) TAρmax=nrRρmaxΔw=nrR(4ρmax3W040+2ρmaxW020)

∂ T A ρ m a x ∂ ρ = − R n r ( 12 ρ m a x 2 W 040 + 2 W 020 ) = 0 \frac{\partial TA_{\rho_{max}}}{\partial\rho}=-\frac{R}{nr}(12\rho_{max}^{2}W_{040}+2W_{020})=0 ρTAρmax=nrR(12ρmax2W040+2W020)=0
ρ m a x = ± 1 \rho_{max}=\pm1 ρmax=±1

得:

W 020 = − 6 W 040 W 020 = ε z r 2 2 R 2 = − 6 W 040 ε z = − 12 R 2 r 2 W 040 = 3 L A m a x \begin{gathered} W_{020}=-6W_{040} \\ W_{020}=\varepsilon_{z}\frac{r^{2}}{2R^{2}}=-6W_{040} \\ \varepsilon_{z}=-12\frac{R^{2}}{r^{2}}W_{040}=3LA_{max} \end{gathered} W020=6W040W020=εz2R2r2=6W040εz=12r2R2W040=3LAmax

所以焦散面长度 L = 3 L A m a x L=3LA_{max} L=3LAmax

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Su!!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值