球差
- 边缘光线交点到高斯像面的距离LAmax及高斯像面的大小TAmax
- 最小弥散斑大小及其到高斯像面的距离εz
- 焦散面长度
① 加入焦散之后的波像差:
Δ
w
=
W
040
ρ
4
+
W
020
ρ
2
\Delta w=W_{040} \rho^{4}+W_{020} \rho^{2}
Δw=W040ρ4+W020ρ2
W
020
=
−
ε
z
r
2
2
R
2
W_{020}=-\varepsilon_z\frac{r^2}{2R^2}
W020=−εz2R2r2
LA边缘光线到像点
ρ
m
a
x
=
±
1
,
n
=
1
\rho_{max}=\pm1, n=1
ρmax=±1,n=1(忽略离焦)
L
A
ρ
m
a
x
=
−
R
2
r
2
ρ
m
a
x
⋅
∂
Δ
w
∂
ρ
m
a
x
LA_{\rho_{max}}=-\frac{R^2}{r^2\rho_{max}}\cdot\frac{\partial\Delta w}{\partial\rho_{max}}
LAρmax=−r2ρmaxR2⋅∂ρmax∂Δw
=
−
R
2
r
2
ρ
m
a
x
⋅
4
W
040
⋅
ρ
m
a
x
3
=-\frac{R^2}{r^2\rho_{max}}\cdot4W_{040}\cdot\rho_{max}^3
=−r2ρmaxR2⋅4W040⋅ρmax3
=
−
4
R
2
r
2
⋅
W
040
=-\frac{4R^2}{r^2}\cdot W_{040}
=−r24R2⋅W040
由
T
A
=
−
R
n
r
⋅
∂
Δ
w
∂
ρ
TA=-{\frac{R}{nr}}\cdot{\frac{\partial\Delta w}{\partial\rho}}
TA=−nrR⋅∂ρ∂Δw得:
∣
T
A
m
a
x
∣
=
4
R
r
⋅
W
040
|TA_{max}|=4\frac{R}{r}\cdot W_{040}
∣TAmax∣=4rR⋅W040
高斯像面大小为:
D
G
=
2
∣
T
A
m
a
x
∣
=
8
R
r
⋅
W
040
D_{G}=2|TA_{max}|=8\frac{R}{r}\cdot W_{040}
DG=2∣TAmax∣=8rR⋅W040
② 引入离焦找最小弥散斑
T
A
ρ
z
=
−
R
n
r
⋅
∂
Δ
w
∂
ρ
z
TA_{\rho_z}=-\frac{R}{nr}\cdot\frac{\partial\Delta w}{\partial\rho_z}
TAρz=−nrR⋅∂ρz∂Δw
=
−
R
n
r
(
4
ρ
z
3
W
040
+
2
ρ
z
W
020
)
=-\frac{R}{nr}(4\rho_{z}^{3}W_{040}+2\rho_{z}W_{020})
=−nrR(4ρz3W040+2ρzW020)
∂
T
A
ρ
z
∂
ρ
z
=
−
R
n
r
(
12
ρ
z
2
W
040
+
2
W
020
)
=
0
\frac{\partial TA_{\rho_z}}{\partial\rho_z}=-\frac{R}{nr}\left(12\rho_z^2W_{040}+2W_{020}\right)=0
∂ρz∂TAρz=−nrR(12ρz2W040+2W020)=0
ρ
z
=
−
W
020
6
W
040
\rho_z=\sqrt{-\frac{W_{020}}{6W_{040}}}
ρz=−6W040W020
为保证边缘光线与焦散面相交,有
∣
T
A
ρ
z
∣
=
∣
T
A
ρ
m
a
x
∣
,
ρ
m
a
x
=
−
1
,
ρ
=
ρ
z
\left|TA_{\rho_{z}}\right|=\left|TA_{\rho_{max}}\right|, \rho_{max}=-1, \rho=\rho_{z}
∣TAρz∣=∣TAρmax∣,ρmax=−1,ρ=ρz
所求TA位于y轴上方,所以有:
− R n r ( 4 ρ z 3 W 040 + 2 ρ z W 020 ) = − R n r ( 4 ρ m a x 3 W 040 + 2 ρ m a x W 020 ) = R n r ( 4 W 040 + 2 W 020 ) -\frac R{nr}(4\rho_z^3W_{040}+2\rho_zW_{020})=-\frac R{nr}(4\rho_{max}^3W_{040}+2\rho_{max}W_{020})=\frac R{nr}(4W_{040}+2W_{020}) −nrR(4ρz3W040+2ρzW020)=−nrR(4ρmax3W040+2ρmaxW020)=nrR(4W040+2W020)
带入 ρ z = − W 020 6 W 040 \rho_z=\sqrt{-\frac{W_{020}}{6W_{040}}} ρz=−6W040W020,有 W 020 W 040 = − 3 2 , ρ z = 1 2 \frac{W_{020}}{W_{040}}=-\frac{3}{2}, \rho_{z}=\frac{1}{2} W040W020=−23,ρz=21,所以有:
T A ρ z = R n r W 040 TA_{\rho_z}=\frac{R}{nr}W_{040} TAρz=nrRW040
最小弥散斑大小 D = 2 ∣ T A ρ z ∣ D=2|TA_{\rho_{z}}| D=2∣TAρz∣。
W 020 = ε z r 2 2 R 2 = − 3 2 W 040 ε z = − 3 R 2 r 2 W 040 W_{020}=\varepsilon_{z}\frac{r^{2}}{2R^{2}}=-\frac{3}{2}W_{040}\\\varepsilon_{z}=-3\frac{R^{2}}{r^{2}}W_{040} W020=εz2R2r2=−23W040εz=−3r2R2W040
由 L A m a x = − 4 R 2 r 2 ρ m a x ⋅ W 040 LA_{max}=-\frac{4R^{2}}{r^{2}\rho_{max}}\cdot W_{040} LAmax=−r2ρmax4R2⋅W040得:
ε
z
=
3
4
L
A
m
a
x
\varepsilon_z=\frac{3}{4}LA_{max}
εz=43LAmax
ε
z
\varepsilon_z
εz即最小弥散斑到高斯像面的距离。
③ 焦散面对应最大弥散斑,根据 T A ρ m a x = − R n r ⋅ ∂ Δ w ∂ ρ m a x = − R n r ( 4 ρ m a x 3 W 040 + 2 ρ m a x W 020 ) TA_{\rho_{max}}=-\frac{R}{nr}\cdot\frac{\partial\Delta w}{\partial\rho_{max}}=-\frac{R}{nr}(4\rho_{max}^{3}W_{040}+2\rho_{max}W_{020}) TAρmax=−nrR⋅∂ρmax∂Δw=−nrR(4ρmax3W040+2ρmaxW020)
∂
T
A
ρ
m
a
x
∂
ρ
=
−
R
n
r
(
12
ρ
m
a
x
2
W
040
+
2
W
020
)
=
0
\frac{\partial TA_{\rho_{max}}}{\partial\rho}=-\frac{R}{nr}(12\rho_{max}^{2}W_{040}+2W_{020})=0
∂ρ∂TAρmax=−nrR(12ρmax2W040+2W020)=0
ρ
m
a
x
=
±
1
\rho_{max}=\pm1
ρmax=±1
得:
W 020 = − 6 W 040 W 020 = ε z r 2 2 R 2 = − 6 W 040 ε z = − 12 R 2 r 2 W 040 = 3 L A m a x \begin{gathered} W_{020}=-6W_{040} \\ W_{020}=\varepsilon_{z}\frac{r^{2}}{2R^{2}}=-6W_{040} \\ \varepsilon_{z}=-12\frac{R^{2}}{r^{2}}W_{040}=3LA_{max} \end{gathered} W020=−6W040W020=εz2R2r2=−6W040εz=−12r2R2W040=3LAmax
所以焦散面长度 L = 3 L A m a x L=3LA_{max} L=3LAmax。