有关NVIDIA 4090的pytorch版本安装心得

本文指导用户如何检查CUDA版本,安装适合的PyTorch版本,并确保安装成功。遇到NVIDIAGPU不兼容警告时,提示可能需要降低PyTorch版本以解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.查看版本

输入 nvidia-smi 查看GPU支持的cuda最高版本

在这里插入图片描述
如上图所示,你的GPU支持的最高CUDA版本便为12.2,所以你要安装CUDA版本不能高于该版本。安装版本不能太低,建议就小一个版本就可以。

nvcc -V查看你安装的CUDA版本

在这里插入图片描述

如上图所示,我安装的CUDA版本为:12.1

2.安装对应版本的pytorch

定义: pytorch 中的CUDA版本不能高于当前机器上已经安装的CUDA版本(12.1)

故我安装的pytorch对应的版本里面的CUDA版本为12.1
在这里插入图片描述
安装链接:在该链接内找到对应的pytorch版本,建议使用pip安装。

3.检测是否安装成功

  • conda activate name ( 激活相关的虚拟环境)
    在这里插入图片描述

  • 输入python 进入python 环境
    在这里插入图片描述

  • 输入 import torch 导入torch 安装包
    在这里插入图片描述

  • 测试 torch.cuda.is_available(),返回True则成功
    在这里插入图片描述

  • 测试 torch.zeros(1).cuda(),返回如下图所示将结果成功
    在这里插入图片描述

4.问题

这里面会报各种各样的问题,总之都是跟版本不兼容有关,但里面有一个错误比较奇怪,如下图所示。

/home/respecting/anaconda3/envs/torch1.8.1/lib/python3.7/site-packages/torch/cuda/__init__.py:104: UserWarning: 
NVIDIA GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
If you want to use the NVIDIA GeForce RTX 3090 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/

当你步骤3的检测全部成功后,在跑你的人工智能模型时依旧会报该错误,说明虽然版本选对了,可能太新了,建议将pytorch的版本降低一些。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值