自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(123)
  • 收藏
  • 关注

原创 LiftSplatShoot中用于处理多视角图像数据并生成鸟瞰图(调试)

根据LSS代码中explore.py 中来显示出来图像。对于 nuscenes dataset 的数据设定。图像坐标系向ego坐标系进行坐标转化。

2024-05-22 11:45:44 154

原创 LiftSplatShoot中用于处理多视角图像数据并生成鸟瞰图

gen_dx_bx:函数用于生成网格参数。self.downsample:是图像下采样因子,用于减少计算复杂度。self.camC:是相机特征通道数。self.frustum:是由create_frustum方法创建的视锥体。CamEncode和BevEncode是两个特征编码模块。

2024-05-22 10:28:23 126

原创 Nuimages 数据集介绍和下载,mmdet3d的训练方法

Nuimages 数据集介绍和mmdet3d的训练Nuimages的方法

2024-05-20 14:44:38 897

原创 COCO2017 数据集的下载方法

我们提供了下载 COCO 等数据集的脚本,你可以运行。mmdetection 下载。opendatalab 下载。下载 COCO 数据集。

2024-05-20 13:48:58 271

原创 [论文阅读]TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer 和代码

论文想要解决的问题和模块代码分析,同时提高可以测试的方式

2024-05-07 12:38:59 974 1

原创 HTML 基本骨架(二)

HTML的基本骨架

2024-05-06 12:39:45 325

原创 [论文阅读]Adversarial Autoencoders(aae)和代码

本文提出的"对抗式自动编码器"(AAE)是一种概率自动编码器,它使用最近提出的生成对抗网络(GAN),通过将自动编码器隐藏代码向量的聚集后验与任意先验分布相匹配来执行变异推理。将聚合后验与先验相匹配可确保从先验空间的任何部分生成有意义的样本。因此,对抗式自动编码器的解码器会学习一个深度生成模型,将强加的先验映射到数据分布上。我们展示了对抗式自动编码器如何应用于半监督分类、图像风格和内容分离、无监督聚类、降维和数据可视化等领域。

2024-05-05 17:14:06 1015 2

原创 nerf(一)

nerf 开山之作

2024-05-05 01:18:11 126

原创 [论文阅读]DWRSeg: Rethinking Efficient Acquisition of Multi-scale Contextual Information for Real-time S

在这种方法中,多速率深度可分离卷积在特征提取中扮演更简单的角色:基于第一步提供的每个区域形式的简洁特征图,在第二步中执行简单的基于语义的形态学滤波,以提高效率。相应地,论文设计了一种新颖的扩张卷积残差(Dilation-wise Residual, DWR)模块和一种简单的反卷积残差(Simple Inverted Residual, SIR)模块,分别用于高层和低层网络,并构建了一个强大的DWR分割(DWRSeg)网络。输出特征图进入一个简单的全卷积网络(FCN)风格的解码器,最终预测由解码器生成。

2024-05-03 16:18:09 717

原创 使用mmdetection来训练自己的数据集(visdrone)(四)结果分析

关于test.py 的命令行。

2024-04-29 17:05:16 100

原创 使用mmdetection来训练自己的数据集(visdrone)(三)使用swin来实战

使用swin来实战

2024-04-29 14:30:51 317

原创 使用mmdetection来训练自己的数据集(visdrone)(二)数据集

转换数据集格式

2024-04-29 14:05:48 228

原创 使用mmdetection来训练自己的数据集(visdrone)(一)

torch 12.1 下 mmdetection安装

2024-04-29 13:48:55 288

原创 如何利用open3D来生成OCC

泊松曲面重建还将在低点密度区域创建三角形,甚至外推到某些区域(请参见上面 eagle 输出的底部)。create_from_point_cloud_poisson 函数有第二个 densities 返回值,该值指示每个顶点的密度。低密度值意味着顶点仅由输入点云中的少量点支持。在下面的代码中,我们使用伪彩色可视化 3D 密度。紫色表示低密度,黄色表示高密度。open3d 效果图。open3D 可视化。

2024-04-15 12:29:07 226

原创 mmcv-ful=1.6.0中不能识别pkl的问题

【代码】mmcv-ful=1.6.0中不能识别pkl的问题。

2024-04-12 12:54:54 162

原创 Distributed training error on Nuscene Dataset

当使用forkstart方法时,父进程在内存中创建自己的新副本(fork),子进程从与父进程相同的内存空间开始执行。一般来说,fork启动方法对于大多数用例来说是一个不错的选择,但重要的是要意识到它的局限性。如果您不确定使用哪种启动方法,您始终可以使用默认的spawn启动方法,这种方法更便携,但效率较低。在PyTorch中使用该模块时指定子进程的启动方法。startfork方法是基于 Unix 的系统的默认方法,通常被认为是生成子进程的最有效的启动方法。然而,启动方法也有一些限制fork。

2024-04-12 12:54:01 1046

原创 mmcv与yapf版本不匹配导致的错误修复(修复mmcv与版本不匹配导致的错误yapf)

verify 参数在 yapf 0.31.0 版本中引入。如果您使用的是较早版本的 yapf,则不会遇到此错误。如果您使用的是自定义 yapf 样式配置,请确保配置中未定义任何不受 FormatCode 函数支持的参数。如果 yapf 版本不符合 mmcv 需要的版本(即不支持某些参数),可能需要更新或降级 yapf。方法一:更新或降级 yapf(不推荐,升级后可能会有其他错误)方法二:删除 verify 参数(我使用,work)中的verify的去掉。更新或降级 yapf。

2024-04-12 12:12:42 192

原创 Numba 报错 “SystemError: initialization of _internal failed without raising an exception“ 的解决方案

如果盲目的升级numba的话,会有其他的错误等着你去修改(本人试过升级了numba,然后报错 numpy版本不兼容,然后到要去改代码)同时mmdet的代码里面会警告你说你的numba版本和mmdet里面不一致所以我去寻求其他方法。此方法将 NumPy 版本锁定为 1.23.5,该版本已知与 Numba 兼容。然后我发现了其他人的方法。简单易行,无需修改代码。

2024-04-12 10:59:32 380

原创 【论文阅读】Digging Into Self-Supervised Monocular Depth Estimation

论文:https://arxiv.org/pdf/1806.01260.pdf代码:https://github.com/nianticlabs/monodepth2。

2024-04-11 14:00:17 1265

原创 numba 和 numpy 版本问题

因为我安装的numba版本问题的问题用了大多数人升级了numba后,发现了一些numpy的函数出了问题遇到这样的情况下。

2024-04-08 08:30:00 461

原创 BEV的多传感器融合方案

是一个先进的技术,它通过使用一种特别的方法来处理来自多种传感器的信息,这对于自动驾驶系统来说非常重要。但是,每种传感器捕获的信息类型不同,处理这些不同类型的信息通常需要大量的计算资源,并且很难实现传感器之间的有效合作。,它使用一种统一的方法来处理所有不同的传感器信息,这意味着它可以同时学习和理解不同传感器提供的数据,而不需要对每种数据进行单独的处理。”的智能算法实现的,它可以处理不同的数据类型并找出它们之间的关系。早期融合指的是在感知层面将来自相机和雷达的原始数据进行融合。

2024-04-02 18:31:26 992

原创 论文阅读RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection

范围视图的一个主要问题是,它继承了传统2D图像检测中的一个典型问题,即物体因距离不同而呈现出的“近大远小”现象,这导致物体尺寸变化多端,给物体检测带来挑战。左图: 描述的是一个方法,其中对于模型考虑的每一个点,都将以该点为中心,而且该点的x轴被定义为局部x轴。这意味着,与左图的方法相比,局部坐标系的定义考虑到了每个点的方位,使得局部x轴的定义更加动态,依赖于每个点相对于全局坐标系的方向。,我们确定了九个邻近点的位置,这些位置的坐标被转换成相对于中心点的直角坐标系统下的位置。中提出的一种结构单元。

2024-04-02 10:35:43 1384

原创 激光雷达的量产车方案

半固态激光雷达根据其扫描方式可以分为一维扫描和二维扫描两种类型,它们的共同点都是利用内部的移动反射镜来改变激光的方向。不同之处在于,一维扫描仅能在水平方向进行,因此其主要提供的是目标的水平距离和高度信息,适用于相对简单的应用场景。随着技术的进步,两种方案将在性能和成本上趋于平衡,并根据不同的应用场景进行选择,为自动驾驶车辆提供更为精确和可靠的环境感知能力。半固态激光雷达,与传统的固态激光雷达相比,其最大特点是在内部采用了移动的反射镜来改变激光的发射方向,实现对车辆周围环境的精确三维扫描。

2024-04-02 10:04:59 359

原创 ModuleNotFoundError: No module named ‘mmcv.runner‘ 中 get_dist_info的问题

mmcv中的很多库都改到了mmengine里面去了,看了源码然后改了过来。如何解决 mmcv中没有get_dist_info 的问题。mmengine中的。

2024-04-01 19:04:39 702

原创 mmdetection中mmcv的 config 问题

将mmcv改成mmengine就可以了。如何更改解决的config问题。记录于2024/04/01。

2024-04-01 18:35:16 115

原创 HTML基本元素

在HTML中,标签有着不同的作用和功能,它们决定了网页的结构和呈现方式。在编写HTML代码时,正确地使用标签以及注意起始标签和结束标签的配对是至关重要的。因此,对于HTML标签的理解和掌握是学习网页开发的第一步。自闭合标签是一种特殊的HTML标签,它们在起始标签中即包含了所有必要的信息,而不需要额外的结束标签来表示元素的结束位置。标签用于在网页中插入图片,它没有结束标签,而是通过属性来指定图片的路径和其他相关信息。某些HTML标签只有起始标签,这种标签被称为自闭合标签(self-closing tag)。

2024-03-30 19:58:10 717

原创 HTLM 之 vscode 插件推荐

搜索 formatctrl+s // win来更换主题。

2024-03-30 19:41:12 371

原创 单摄像头、双目摄像头、多视图系统:了解自动驾驶汽车的传感器

在矫正良好的双目视觉系统中,两个相机只有水平方向的视差,可以利用对极信息来恢复真实的深度,从而得到真实的3D信息。目前,双目相机是一种替代camera+lidar的自动驾驶方案,业内有DJI、PhiGent Robotics等厂商使用和探索。单目相机一般用于自动驾驶的前视摄像头,可以看到比较远的距离。其缺点在于因为没有相机视野之间的overlap,无法从对极信息来恢复真实深度,只能用数据驱动的方法来估计,存在泛化性问题。一般来说,相机可以分为单目相机、双目相机和多视角相机。4.sonar 声纳。

2024-03-28 18:55:00 775

原创 基于C++的GridMap2D 代码和公式

膨胀半径这段代码主要是关于在二维地图上计算点之间距离的几个函数,同时也包含了查询地图上特定坐标点的距离和值的函数。cv::Point和 distanceMapAtCell(unsigned int mx, unsigned int my)wxwymxmy-1和 binaryMapAtCell(unsigned int mx, unsigned int my)0。

2024-03-28 14:33:45 618

原创 C++中 eigen(一)建造向量

当然,Eigen 不限于在编译时维度已知的矩阵。RowsAtCompileTime 和 ColsAtCompileTime 模板参数可以采用特殊值 Dynamic ,该值表示编译时大小未知,因此必须作为运行时处理多变的。例如,方便的 typedef Vector3f 是一个包含 3 个浮点数的(列)向量。b 是一个动态大小的矩阵,当前大小为 0 乘 0,其系数数组尚未分配。a 是一个 10x15 的动态矩阵,系数已分配但当前未初始化。b 是一个动态大小为 30 的向量,系数已分配但当前未初始化。

2024-03-28 11:22:15 758

原创 Occupancy 后处理

假设3D的voxel volume的尺寸是(x, y, z), 投影到的平面BEV的尺寸就是(x, y)T_veh = (T_x, T_y, T_z): 在 BEV 坐标中代表车辆位置的平移矢量。P_bev = (X_bev, Y_bev, Z_bev) : BEV 坐标中的一个点。XZ 平面(侧视图): 将体素投影到侧视平面上(X 轴:向前,Z 轴:向上)。XY 平面(鸟瞰图): 将体素投影到地平面上(X 轴:向前,Y 轴:向左)。YZ 平面(正视图): 将体素投射到前平面上(Y 轴:左,Z 轴:上)。

2024-03-28 10:28:56 823

原创 Occupancy field----其他应用

点云:由一系列3D点构成,每个点标示物体表面的一个特定位置。体素:通过将3D空间划分成一系列规则的小格子来表示物体的占用情况,每个格子代表一个体积单位内的物体存在状态。三角面片:利用一系列三角形来模拟物体表面,每个三角形覆盖物体表面的一小部分。:描述空间中每个点是否被占用的状态。:记录空间中每个点到物体表面的距离。:表示每个点在特定视角和光照条件下的颜色与亮度。空间场指的是一种将空间中的点映射到特定属性(如标量、向量等)的函数。例如,温度场将点映射到温度值,而重力场则映射到重力强度。

2024-03-28 09:28:36 841

原创 双目的Occupancy——Occdepth

该工作通过借鉴人类利用双眼感知3D世界中深度信息的能力,提出了一种名为OccDepth的语义场景补全方法。这种方法既显式也隐式地利用了图像中包含的深度信息,旨在帮助更好地恢复3D几何结构。

2024-03-27 08:56:36 658

原创 科研分享|论文关系网络可视化

网站:

2024-03-27 07:48:35 309

原创 Occupancy 代码--mmdet3dSurroundOcc_head代码详解

SurroundOcc代码库的整体架构提供了一个清晰的框架,旨在处理BEV(鸟瞰视图)/Occupancy(占用)等任务,其结构设计允许用户快速理解和应用到其他相关代码库中。通过上述组成部分的协同工作,SurroundOcc代码库不仅为用户提供了一个灵活、可扩展的研究和开发环境,同时也展示了在BEV/Occupancy等视觉任务中应用深度学习的一种有效方法。现在很多最新的领域上都是基于mmdet3d上面制作,所以我们要利用好的工具,减少自己的研究时间,不要再制造轮子了。

2024-03-25 10:50:57 1094

原创 Occupancy 训练策略

通过loss和调参,加快你的研究速度

2024-03-22 14:46:42 594

原创 Occupancy Head 以 Surroundocc 为例

占用流迹损失(flow trace loss)的具体定义如下:首先,将通过时间变换(warp)后的占用信息与占用网络(Occupancy Networks)预测的结果进行相乘操作(这里的相乘是指在相同的(x, y)位置的值(0或1)相乘),然后,将这一结果与地面真实的占用情况(gt occupancy)进行比较。它的原理与RGB图像中的光流(Optic Flow)和点云数据的场景流(Scene Flow)相似,主要用于预测未来的占用体素(Occupancy voxels)以及物体速度的估计。

2024-03-21 14:13:37 628

原创 多视图,BEV,occupancy

对齐(Align):该步骤通过将历史帧的特征通过变换矩阵(RT矩阵)转换到当前帧,实现时间维度上的信息对齐。连接(Concat):通过将对齐后的历史特征与当前帧的特征进行连接,模型能够综合利用时空信息,增强对场景的整体理解。:在处理占用率检测任务时,此步骤会将特征编码为三维(3D)特征,即特征在垂直方向(z方向)上的张量维度不为1,从而明显区别于BEV的二维(2D)特征。通过这一系列精心设计的步骤,可以有效地理解并实现BEV架构与占用率检测之间的关系,为自动驾驶系统中的空间理解提供强大的支持。

2024-03-20 10:28:40 675

原创 SurroundOcc 代码的 数据加载,推理,指标评测,可视化

代码实践和分析

2024-03-19 18:40:59 449

原创 开源数据集 nuScenes 之 3D Occupancy Prediction

OccNet 在 nuScenes 基础上推出的 OpenOcc 数据集,提供环视相机图像、3D occupancy 和 occupancy flow 标注等。数据集通过将 Lidar 数据体素化,生成精确的3D真值,支持场景理解和3D重建研究。这一数据集不仅适合静态场景分析,也能用于研究动态环境,为机器视觉等领域的进步提供重要资源。可以看一下我的blog如何下载。Nuscenes 数据结构。Occnet 数据集。

2024-03-19 11:42:23 657

基于vgg16进行迁移学习服装分类

基于VGG16进行迁移学习的服装分类项目,是一个非常有趣且具有实际应用价值的任务。首先,VGG16是一个在ImageNet数据集上预训练的深度卷积神经网络,它因其简单而有效的架构而广受欢迎。通过迁移学习,我们可以利用VGG16网络已经学到的知识,即它的权重和特征提取能力,来解决我们特定的服装分类问题,而无需从头开始训练一个完整的模型。这样不仅可以节省大量的训练时间,还可以提高模型的准确率。 在开始编写代码之前,我们首先需要在Google Colab上设置我们的工作环境。Colab提供了免费的GPU,这对于加快深度学习模型的训练速度非常有帮助。接着,我们需要导入必要的Python库,如pytorch。这些库为我们提供了构建和训练深度学习模型所需的工具和接口。

2024-03-06

使用GRU进行天气变化的时间序列预测和天气时间序列数据集

在Google Colab平台上,利用pytorch来编写的,使用门控循环单元(GRU)进行天气变化的时间序列预测。GRU是一种特殊的循环神经网络(RNN),被设计来处理序列数据,如时间序列数据,通过捕捉序列中的时间动态特征来进行预测或分类。数据文档是一个天气时间序列数据集,它由德国耶拿的马克思 • 普朗克生物地球化学研究所的气象站记录。在这个数据集中,每 10 分钟记录 14 个不同的量(比如气温、气压、湿度、风向等),其中包含2009-2016多年的记录。

2024-03-04

基于pytorch使用LSTM实现文本匹配任务代码和训练文件

使用基于PyTorch框架的LSTM(长短期记忆)网络在Google Colab 上面来实现文本匹配任务,包括完整的代码实现和必要的训练数据文件。这个过程涉及构建一个深度学习模型,该模型能够理解并比较两段文本的含义,判断它们在语义上是否匹配或相关。实现这一功能需要详细的步骤,包括数据预处理、模型设计、训练过程以及最终的评估

2024-03-04

lenet 的 tensorflow版本,同时里面对卷积层的可视化

lenet 的 tensorflow版本,同时里面对卷积层的可视化

2023-09-11

基于pytorch使用LSTM实现新闻本文分类任务

在colab环境下实现,如果想使用cpu的话 自己换一下device的代码就可以了

2023-09-10

Pytorch实现基于LSTM的情感分析的代码和数据集

Pytorch实现基于LSTM的情感分析的代码和数据集

2023-08-31

基于pytorch LSTM 的股票预测

基于pytroch LSTM的股票预测,用于参考

2023-08-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除