Java中使用Lambda表达式写代码,实在是优雅
前言
日常开发中,我们很多时候需要用到Java 8
的Lambda
表达式,它允许把函数作为一个方法的参数,让我们的代码更优雅、更简洁。所以整理了一波工作中,我常用的,有哪些Lambda
表达式。看完一定会有帮助的
List 转 Map
工作中,我们经常遇到list
转map
的案例。Collectors.toMap
就可以把一个list
数组转成一个Map
。代码如下:
public void test1() {
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "木子腾", 18));
userInfoList.add(new UserInfo(2L, "程序员木子腾", 27));
userInfoList.add(new UserInfo(2L, "打代码的木子腾", 26));
/**
* list 转 map
* 使用Collectors.toMap的时候,如果有可以重复会报错,所以需要加(k1, k2) -> k1
* (k1, k2) -> k1 表示,如果有重复的key,则保留第一个,舍弃第二个
*/
Map<Long, UserInfo> userInfoMap = userInfoList.stream().collect(Collectors.toMap(UserInfo::getId, userinfo -> userinfo, (k1, k2) -> k1));
userInfoMap.values().forEach(item -> System.out.println(item.getUsername()));
}
结果:
木子腾
程序员木子腾
类似的,还有Collectors.toList()
、Collectors.toSet()
,表示把对应的流转化为list
或者Set
。
filter 过滤
从数组集合中,过滤掉不符合条件的元素,留下符合条件的元素。
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "木子腾", 18));
userInfoList.add(new UserInfo(2L, "程序员木子腾", 27));
userInfoList.add(new UserInfo(2L, "打代码的木子腾", 26));
/**
* filter 过滤,留下超过18岁的用户
*/
List<UserInfo> userInfoResultList = userInfoList.stream().filter(userInfo -> userInfo.getAge() > 18).collect(Collectors.toList());
userInfoResultList.forEach(item -> System.out.println(item.getUsername()));
结果:
程序员木子腾
打代码的木子腾
foreach 遍历
foreach 遍历list,遍历map,真的很丝滑。
/**
* forEach 遍历集合List列表
*/
List<String> userNameList = Arrays.asList("木子腾", "程序员木子腾", "打代码的木子腾");
userNameList.forEach(System.out::println);
HashMap<String, String> hashMap = new HashMap<>();
hashMap.put("姓名", "木子腾");
hashMap.put("职业", "程序员");
hashMap.put("昵称", "LiLi");
/**
* forEach 遍历集合Map
*/
hashMap.forEach((k, v) -> System.out.println(k + ":\t" + v));
结果:
木子腾
程序员木子腾
打代码的木子腾
姓名: 木子腾
职业: 程序员
昵称: LiLi
groupingBy 分组
提到分组,相信大家都会想起SQL
的group by
。我们经常需要一个List做分组操作。比如,按城市分组用户。在Java8之前,是这么实现的:
List<UserInfo> originUserInfoList = new ArrayList<>();
originUserInfoList.add(new UserInfo(1L, "木子腾", 18, "深圳"));
originUserInfoList.add(new UserInfo(2L, "程序员木子腾", 27, "深圳"));
originUserInfoList.add(new UserInfo(3L, "打代码的木子腾", 26, "河南"));
Map<String, List<UserInfo>> result = new HashMap<>();
for (UserInfo userInfo : originUserInfoList) {
String city = userInfo.getCity();
List<UserInfo> userInfos = result.get(city);
if (userInfos == null) {
userInfos = new ArrayList<>();
result.put(city, userInfos);
}
userInfos.add(userInfo);
}
而使用Java8的groupingBy
分组器,清爽无比:
Map<String, List<UserInfo>> result = originUserInfoList.stream().collect(Collectors.groupingBy(UserInfo::getCity));
result.forEach((k, v) -> System.out.println(k + ":\t" + v));
结果:
河南: [UserInfo(id=3, username=打代码的木子腾, age=26, city=河南)]
深圳: [UserInfo(id=1, username=木子腾, age=18, city=深圳), UserInfo(id=2, username=程序员木子腾, age=27, city=深圳)]
sorted+Comparator 排序
工作中,排序的需求比较多,使用sorted+Comparator
排序,真的很香。
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "木子腾", 18));
userInfoList.add(new UserInfo(2L, "程序员木子腾", 27));
userInfoList.add(new UserInfo(3L, "打代码的木子腾", 26));
/**
* sorted + Comparator.comparing 排序列表,
*/
userInfoList = userInfoList.stream().sorted(Comparator.comparing(UserInfo::getAge)).collect(Collectors.toList());
userInfoList.forEach(item -> System.out.println(item.toString()));
System.out.println("开始降序排序");
/**
* 如果想降序排序,则可以使用加reversed()
*/
userInfoList = userInfoList.stream().sorted(Comparator.comparing(UserInfo::getAge).reversed()).collect(Collectors.toList());
userInfoList.forEach(item -> System.out.println(item.toString()));
结果:
UserInfo(id=1, username=木子腾, age=18, city=null)
UserInfo(id=3, username=打代码的木子腾, age=26, city=null)
UserInfo(id=2, username=程序员木子腾, age=27, city=null)
开始降序排序
UserInfo(id=2, username=程序员木子腾, age=27, city=null)
UserInfo(id=3, username=打代码的木子腾, age=26, city=null)
UserInfo(id=1, username=木子腾, age=18, city=null)
distinct 去重
distinct
可以去除重复的元素:
List<String> list = Arrays.asList("A", "B", "F", "A", "C");
List<String> result = list.stream().distinct().collect(Collectors.toList());
result.forEach(System.out::println);
结果:
A
B
F
C
findFirst 返回第一个
findFirst
很多业务场景,我们只需要返回集合的第一个元素即可:
List<String> list = Arrays.asList("A", "B", "F", "A", "C");
list.stream().findFirst().ifPresent(System.out::println);
结果:
A
anyMatch 是否至少匹配一个元素
anyMatch
检查流是否包含至少一个满足给定谓词的元素。
Stream<String> stream = Stream.of("A", "B", "C", "D");
boolean flag = stream.anyMatch(s -> s.contains("C"));
System.out.println(flag);
结果:
true
allMatch 匹配所有元素
allMatch
检查流是否所有都满足给定谓词的元素。
Stream<String> stream = Stream.of("A", "B", "C", "D");
boolean match = stream.allMatch(s -> s.contains("C"));
System.out.println(match);
结果:
false
map 转换
map
方法可以帮我们做元素转换,比如一个元素所有字母转化为大写,又或者把获取一个元素对象的某个属性,demo
如下:
List<String> list = Arrays.asList("jay", "tianluo");
// 转化为大写
List<String> result = list.stream().map(String::toUpperCase).collect(Collectors.toList());
result.forEach(System.out::println);
结果:
JAY
TIANLUO
Reduce
Reduce可以合并流的元素,并生成一个值
int sum = Stream.of(1, 2, 3, 4).reduce(0, (a, b) -> a + b);
System.out.println(sum);
结果:
10
peek 打印个日志
peek()
方法是一个中间Stream
操作,有时候我们可以使用peek
来打印日志。
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "木子腾", 18));
userInfoList.add(new UserInfo(2L, "程序员木子腾", 27));
userInfoList.add(new UserInfo(3L, "打代码的木子腾", 26));
List<UserInfo> result = userInfoList.stream()
.filter(userInfo -> userInfo.getAge() > 18)
.peek(userInfo -> System.out.println("打印:" + userInfo))
.collect(Collectors.toList());
System.out.println(result);
结果:
打印:UserInfo(id=2, username=程序员木子腾, age=27, city=null)
打印:UserInfo(id=3, username=打代码的木子腾, age=26, city=null)
[UserInfo(id=2, username=程序员木子腾, age=27, city=null), UserInfo(id=3, username=打代码的木子腾, age=26, city=null)]
Max,Min 最大最小
使用lambda流求最大,最小值,非常方便。
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "木子腾", 18));
userInfoList.add(new UserInfo(2L, "程序员木子腾", 27));
userInfoList.add(new UserInfo(3L, "打代码的木子腾", 26));
userInfoList.stream()
.max(Comparator.comparing(UserInfo::getAge))
.ifPresent(userInfo -> System.out.println("最大年龄为:" + userInfo.getAge()));
userInfoList.stream()
.min(Comparator.comparing(UserInfo::getAge))
.ifPresent(userInfo -> System.out.println("最小年龄为:" + userInfo.getAge()));
结果:
最大年龄为:27
最小年龄为:18
count 统计
一般count()
表示获取流数据元素总数。
List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "木子腾", 18));
userInfoList.add(new UserInfo(2L, "程序员木子腾", 27));
userInfoList.add(new UserInfo(3L, "打代码的木子腾", 26));
long count = userInfoList.stream().filter(userInfo -> userInfo.getAge() > 18).count();
System.out.println(count);
结果:
2
常用函数式接口
其实lambda离不开函数式接口,我们来看下JDK8常用的几个函数式接口:
Function<T, R>
(转换型): 接受一个输入参数,返回一个结果Consumer<T>
(消费型): 接收一个输入参数,并且无返回操作Predicate<T>
(判断型): 接收一个输入参数,并且返回布尔值结果Supplier<T>
(供给型): 无参数,返回结果
Function<T, R>
是一个功能转换型的接口,可以把将一种类型的数据转化为另外一种类型的数据
public void testFunction() {
// 获取每个字符串的长度,并且返回
Function<String, Integer> function = String::length;
Stream<String> stream = Stream.of("木子腾", "程序员木子腾", "打代码的木子腾");
Stream<Integer> integerStream = stream.map(function);
integerStream.forEach(System.out::println);
}
结果:
3
6
7
Consumer<T>
是一个消费性接口,通过传入参数,并且无返回的操作
public void testConsumer() {
// 获取每个字符串的长度,并且返回
Consumer<String> consumer = System.out::println;
Stream<String> stream = Stream.of("木子腾", "程序员木子腾", "打代码的木子腾");
stream.forEach(consumer);
}
结果:
木子腾
程序员木子腾
打代码的木子腾
Predicate<T>
是一个判断型接口,并且返回布尔值结果
public void testPredicate() {
// 获取每个字符串的长度,并且返回
Predicate<Integer> predicate = a -> a > 18;
UserInfo userInfo = new UserInfo(2L, "木子腾", 27);
System.out.println(predicate.test(userInfo.getAge()));
}
结果:
true
Supplier<T>
是一个供给型接口,无参数,有返回结果
public void testSupplier() {
Supplier<Integer> supplier = () -> Integer.valueOf("666");
System.out.println(supplier.get());
}
结果:
666
更多文章在我的语雀平台:https://www.yuque.com/ambition-bcpii/muziteng