前言
第一次进行CSDN内容的创作,初衷是为了记录分享自己在摸索处理CMIP6气候变化降雨数据时的心得体会。纯自学(基于chatgpt),Chatgpt目前在这方面能力还是很强的,不过很多细节的东西需要自己去摸索,不断去调试,去找出问题,才能达到理想的效果。
PS:由于没有气候变化专业背景(老师要求做),文中有不恰当的地方欢迎大家批评指正,如有便捷方法也请大家在评论区交流!!!
下面就从基础数据处理开始分享:
一、数据准备
1.下载CMIP6数据(https://aims2.llnl.gov/search/cmip6/ )
选择自己需要下载的数据
本文选择的是北京气候中心 BCC-CSM2 降雨数据 包括历史时期和未来时期(SSP26)
范围:全球
2.准备校正数据
中国区域地面气象要素驱动数据集(1979-2018)
下载地址:https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/
中国区域地面气象要素驱动数据集,包括近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率共7个要素。数据为NETCDF格式,时间分辨率为3小时,水平空间分辨率为0.1°。可为中国区陆面过程模拟提供驱动数据。 该数据集是以国际上现有的Princeton再分析资料、GLDAS资料、GEWEX-SRB辐射资料,以及TRMM降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。详细过程请参阅参考文献。原始资料来自于气象局观测数据、再分析资料和卫星遥感数据。已去除非物理范围的值,采用ANU-Spline统计插值。精度介于气象局观测数据和卫星遥感数据之间,好于国际上已有再分析数据的精度。
范围:中国
3.边界数据
自己的研究区边界shp文件
二、使用步骤
1.数据制作
三、代码
1.数据读入
import xarray as xr
import geopandas as gpd
from shapely.geometry import mapping
import numpy as np
import os
import dask
import pandas as pd
# 定义文件夹路径和 shapefile
input_folder = r'C:\data_pr\ssp370'
output_file = r'G:\Thesis\Data\SSP\CSDN.nc'
shp_path = r"D:\转换\YLB1.shp"
# 读取 shapefile
shp = gpd.read_file(shp_path)
# 获取所有 NetCDF 文件路径并排序
nc_files = [os.path.join(