基于大语言模型的无标签图节点分类
2023 IEEE Symposium on Security and Privacy (SP)
摘要:
近年来,图神经网络(GNN)在解决节点分类问题方面取得了显著成就。然而,它们需要大量高质量的标签才能保证出色的性能。相比之下,大语言模型(LLMs)在具有文本属性的图上表现出卓越的零样本处理问题的能力,但在有效处理结构化数据时面临挑战,并且推理成本较高。基于这些观察,本研究提出了一种基于大语言模型的无标签图节点分类的方法——LLM-GNN。该方法 结合了 GNN 和 LLM 的优点,同时缓解了它们的局限性。具体来说,LLM 用于标注一小部分节点,然后通过这些标注训练 GNN,来对剩余的大部分节点进行预测。LLM-GNN 的实施也面临一个的挑战:如何主动选择节点供 LLM 进行标注,从而提升 GNN 的训练效果?如何利用 LLM 获得高质量、具有代表性和多样性的标注,以降低成本同时提高 GNN 的性能?为应对这一挑战,本文设计了 一个标注质量的启发式方法,并利用 LLM 的置信度得分来优化节点选择。全面的实验结果验证了 LLM-GNN 的有效性。特别是在大规模数据 OGBN-PRODUCTS