自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 算法设计技巧与分析(六):图遍历(Graph Traversal)

文章目录图遍历(Graph Traversal)一、深度优先搜索(Depth-First Search)二、寻找关节点(Finding Articulation Points in a Graph)三、广度优先搜索(Depth-First Search)图遍历(Graph Traversal)一、深度优先搜索(Depth-First Search)深度优先搜索如下图所示:图算法伪代码如下:Input: 无向图G=(V, E);Output: 对应深度优先搜索树中顶点的预排序和后排序pred

2021-12-07 16:25:44 1351

原创 算法设计技巧与分析(十一):近似算法(approximation algorithms)

文章目录网络流(Network Flow)网络流的性质网络流(Network Flow)网络是一个四元组(G,s,t,c),其中G=(V,E)是一个有向图,s和t是两个分别称为源和汇的不同顶点,c(u,v)是一个容量函数,如果(u,v)属于E,则c(u,v)>0,否则c(u,v)=0,|V|=n,|E|=m。网络流的性质G中的流是顶点对上的实值函数f,具有以下四个条件:对于任意一个时刻,设f(u,v)实际流量,则整个图G的流网络满足3个性质...

2021-12-06 21:27:41 3087

原创 算法设计技巧与分析(七):回溯(Backtracking)

文章目录回溯(Backtracking)一、三色问题(The 3-Coloring Problem)回溯(Backtracking)一、三色问题(The 3-Coloring Problem)

2021-12-06 10:08:13 1178

原创 算法设计技巧与分析(五):贪心算法(The Greedy Approach)

文章目录贪心算法(The Greedy Approach)一、部分背包问题(The Fractional Knapsack Problem)二、最短路径问题Dijkstra算法Kruskal算法三、文件压缩(File Compression)贪心算法(The Greedy Approach)一、部分背包问题(The Fractional Knapsack Problem)给定大小为s1、s2、…、sn的n个项目以及值v1、v2、…、vn和大小C、背包容量,目标是找到使总和最大化的非负实数x1、x2、

2021-12-06 09:42:52 1125

原创 西瓜书学习笔记4

西瓜书学习笔记——决策树一、基本流程一颗决策树包含一个根结点、若干个子结点和若干个叶结点。根结点:包含样本全集;子结点:对应属性划分,包含划分样本;叶结点:对应决策结果,包含决策样本。从根结点到每个叶结点的路径:对应一个判定测试序列(系列子决策)。决策树采用分而治之(Divide and Conquer)策略,以一系列的子决策决定分类结果。决策树的生成是一个递归过程。核心是最优划分属性的选择,有三种情形导致递归返回:(1) 当前结点包含的样本全属于同一类别,无需划分,该结点类别确定。(2

2021-12-04 20:41:25 134

原创 算法设计技巧与分析(十):匹配(Matching)

文章目录匹配(Matching)一、二分图的匈牙利树方法(The Hungarian Tree Method for Bipartite Graphs)二分图(二部图)匹配(Matching)给定一个无向图G=(V,E),|V|=n和|E|=m。G中的匹配是属于E的子集M,使M中的两条边没有共同的顶点。如果边e属于E在M中,则它是匹配的,否则是不匹配的或自由的。如果顶点v属于V与匹配的边关联,则它是匹配的,否则是不匹配的或自由的。匹配M的大小,即其中匹配边的数量,将用|M|表示。图中的最大匹配是最大基

2021-12-01 21:09:12 1669 1

原创 算法设计技巧与分析(九):网络流(Network Flow)

文章目录网络流(Network Flow)网络流的性质割(cut)与流(flow)余量函数(Residual Capacity Function)与余量图(Residual Graph)增广路径(Augmenting Path)一、The Ford-Fulkerson Method二、EK算法(Minimum path length augmentation)最小增广路径长度(MPLA)网络流(Network Flow)网络是一个四元组(G,s,t,c),其中G=(V,E)是一个有向图,s和t是两个分

2021-12-01 14:58:30 2390

原创 算法设计技巧与分析(八):随机算法(Randomized Algorithms)

文章目录随机算法(Randomized Algorithms)一、随机选择(Randomized Selection)随机算法(Randomized Algorithms)随机算法可分为两类:第一类被称为拉斯维加斯算法。它由那些总是给出正确答案或根本不给出答案的随机算法组成。第二类被称为蒙特卡罗算法。它总是给出一个答案,但有时可能会产生一个不正确的答案。然而,通过在每次运行中使用独立的随机选择重复运行该算法,产生错误答案的概率可以变得任意小。一、随机选择(Randomized Sel

2021-11-30 22:33:23 6096

原创 算法设计技巧与分析(四):动态规划(Dynamic Programming)

文章目录动态规划(Dynamic Programming)一、寻找最长公共子序列(The Longest Common Subsequence)二、寻找所有点对的最短路径(The All-Pairs Shortest Path)三、背包问题(The Knapsack Problem)动态规划(Dynamic Programming)一、寻找最长公共子序列(The Longest Common Subsequence)子序列定义如图所示:问题分析:设A=“a0,a1,…,am”,B=“b0,b1

2021-11-29 20:11:51 393

原创 算法设计技巧与分析(三):分而治之(Divide and Conquer)

文章目录分而治之一、寻找最小最大元素(MINMAX)二、寻找中间或第k小的元素(Finding the Median and the kth Smallest Element)三、快速排序(Quicksort)分而治之一、寻找最小最大元素(MINMAX)比起直接寻找最小最大元素,分而治之法能更好的提升算法的性能。算法思想:将数组分为两部分,在每一半中寻找其最小最大元素,而后再对每一半中的最小最大元素进行比较,找到最终的最小最大元素。算法伪代码如下:Input:A[1...n]Output:

2021-11-28 12:06:12 741

原创 算法设计技巧与分析(二):几种递归算法

文章目录几种递归算法一、几种递归算法一、选择排序过程:

2021-11-26 17:48:10 729

原创 算法设计技巧与分析(一):基本算法(下)

文章目录一、pandas是什么?一、pandas是什么?

2021-11-25 14:31:35 560

原创 算法设计技巧与分析(一):基本算法(上)

文章目录基本算法(上)一、二分查找二、合并两个有序表基本算法(上)一、二分查找首先选择数组中间的数字和需要查找的目标值比较如果相等,则直接返回答案如果不相等1、如果中间的数字大于目标值,则中间数字向右的所有数字都大于目标值,全部排除2、如果中间的数字小于目标值,则中间数字向左的所有数字都小于目标值,全部排除算法伪代码如下:Input:升序数组a[n]Output:查找的位置jlow = 1;high = n;j = 0;while(low <= high &

2021-11-22 21:08:20 836

原创 西瓜书学习笔记3

西瓜书学习笔记——线性模型一、基本形式对于一个物体,线性模型通过学得各个属性的线性组合来对其进行预测:f(X) = w1*x1 + w2*x2 + …+wd*xd + b上式可以用向量形式写成 f(x) = ωTx + b当我们学习得到w和b之后便可以将模型确定下来。线性模型的应用范围比较有限,但我们可以在这几个基础上通过层级结构或高维映射得到功能更为强大的非线性模型。在线性模型中,w直观表达了各属性在预测中的重要性,因此线性模型有很好的可解释性(comprehensibility) 。二、线

2021-07-19 00:12:25 298

原创 西瓜书学习笔记2

西瓜书学习笔记——模型的评估与选择一、经验误差与过拟合错误率: 分类错误的样本数占样本总数的比例称为“错误率”,即如果我们在m个样本中有a个样本分类错误,则错误率为E=a/m。精度: 与错误率相对应,分类正确的样本数占样本总数的比例就是精度,即精度=1-错误率。误差: 学习器的实际预测输出与样本的真实输出之间的差异称为“误差”,学习器在训练集上的误差称为“训练误差”或“经验误差”,在新样本上的误差称为”泛化误差“。我们希望得到的学习器具有的泛化误差越小越好,但是我们事先并不知道新样本是什么样,实际能

2021-07-13 21:41:10 202

原创 西瓜书学习笔记1

西瓜书学习笔记——绪论一、引言经验: 在生活中,我们存在很多用经验来做判断的事情,在计算机系统中,这些经验用"数据”来进行表示,一条数据就是一个经验。模型: 指从数据中学得的结果。模式: 指局部性结果。机器学习的任务: 关于计算机从数据中产生“模型”的算法,也就是我们经常说的学习算法。有了这个模型,我们就可以将数据输入其中从而得到判断结果。机器学习的形式化定义: 假设用P来评估计算机程序在某一个任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E

2021-07-13 21:39:48 202

原创 C语言数据结构总复习(划重点):图

学习目标:总复习数据结构:图为备考划重点自用,不喜勿喷。一、图的基本概念1.图不可以是空图2.完全图:对于无向图:有n(n-1)/2条边的无向图称为完全图,在完全图中任意两顶点之间都存在边。对于有向图:有n(n-1)条弧的有向图称为有向完全图,在有向完全图中任意两个顶点之间都存在方向相反的两条弧。3. 无向图中:连通:从顶点v到顶点w有路径存在连通图:图中任意两个顶点都是连通的连通分量:即极大连通子图,极大即要求该连通子图包含其所有的边;(极小连通子图是既要保持图

2021-07-11 15:06:46 377

原创 C语言数据结构总复习(划重点):绪论

学习目标:总复习数据结构:绪论为备考划重点自用,不喜勿喷。一、数据结构的基本概念1.数据元素是数据的基本单位。2.数据结构包括三方面的内容:逻辑结构、存储结构、数据的运算。3.数据的逻辑结构分为线性结构和非线性结构。4.存储结构也称物理结构。二、算法和算法评价1.算法是对特定问题求解步骤的一种描述,它是指令的有限序列。2.算法具有5个重要特征:1)有穷性。2)确定性。3)可行性。4)输入。5)输出。...

2020-12-23 14:59:32 320

原创 C语言数据结构总复习(划重点):串、数组

学习目标:总复习数据结构:串为备考划重点自用,不喜勿喷。一、串的定义和实现1.串中字符的个数称为串的长度。n=0时的串成为空串(用表示)。2.串中任意个连续的字符组成的子序列称为该串的子串,包含子串的串成为主串。3.子串在主串中的位置以子串的第一个字符在主串中的位置来表示。4.串的定长顺序存储表示:5.串的块链存储表示:6.串的基本操作:str str二、串的模式匹配1.简单的模式匹配算法...

2020-12-14 09:21:37 767

原创 C语言数据结构总复习(划重点):栈、队列

学习目标:总复习数据结构:栈、队列、数组为备考划重点自用,不喜勿喷。一、栈1.栈是只允许在一端进行插入或删除操作的线性表。二、队列1.队列是只允许在表的一端进行插入,在另一端进行删除的线性表。2.队列的顺序存储typedef struct{ elemtype data[maxsize]; int front,rear;}Queue;3.循环队列的操作1)初始化void initqueue(Queue &Q){ Q.rear=Q.fro

2020-12-11 16:34:09 304

原创 C语言数据结构总复习(划重点):线性表

学习目标:总复习数据结构:线性表为了备考划重点自用,不喜勿喷。一、线性表的定义和基本操作1.线性表是具有相同数据类型的n个数据元素的有限序列,其中n为表长,当n=0,是线性表是一个空表。2.a1是表头元素,an是表尾元素。除第一个元素之外,每个元素有且仅有一个直接前驱;除最后一个元素外,每一个元素有且仅有一个直接后继。二、线性表的顺序表示1.顺序表的特点是表中元素的逻辑顺序与物理顺序相同。2.顺序存储:Loc(A):线性表存储的起始位置数组下标 顺序表 内

2020-12-10 21:13:36 336

原创 吴恩达Deep Learning代码笔记(伪代码).第二周

文章目录学习目标:学习内容:学习目标:1、m个样本的梯度下降(非向量化)2、m个样本的梯度下降(向量化)3、python中的broadcasting学习内容:0、步骤示意图1、m个样本的梯度下降(非向量化)J=0;dw1=0;dw2=0;db=0;for i = 1 to m z(i) = wx(i)+b; a(i) = sigmoid(z(i)); J += -[y(i)log(a(i))+(1-y(i))log(1-a(i));..

2020-12-03 20:29:57 732 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除