吴恩达Deep Learning代码笔记(伪代码).第二周

文章目录

学习目标:

学习内容:


学习目标:

1、m个样本的梯度下降(非向量化)

2、m个样本的梯度下降(向量化)

3、python中的broadcasting


学习内容:

0、步骤示意图

1、m个样本的梯度下降(非向量化)

J=0;dw1=0;dw2=0;db=0;#dw1、dw2没有上标i表示代表其为m个样本整体的dw1与dw2
for i = 1 to m
    z(i) = wx(i)+b;
    a(i) = sigmoid(z(i));
    J += -[y(i)log(a(i))+(1-y(i))log(1-a(i)];
    dz(i) = a(i)-y(i);
    dw1 += x1(i)dz(i);#假设w参数只有两个
    dw2 += x2(i)dz(i);
    db += dz(i);
J/= m;#取均值
dw1/= m;
dw2/= m;
db/= m;
w1=w1-alpha*dw1;#更新参数
w2=w2-alpha*dw2;
b=b-alpha*db;

2、m个样本的梯度下降(向量化)

import numpy

z=np.dot(w.T,X)+b;#向量化
A=sigmoid(Z);
dz=A-Y;
dw=(X*(dz.T))/m;
db=np.sum(dz)/m;
w=w-alpha*dw;#更新参数
b=b-alpha*db;

3、python中的broadcasting

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值