《利用Python进行数据分析》数据处理——MovieLens 1M数据集

这篇博客介绍了如何使用Pandas处理MovieLens 1M数据集,包括读取数据、合并用户和评分数据、创建透视表、计算平均评分、按性别分组以及对电影评分的差异进行排序。通过merge、pivot_table和groupby等函数,实现了数据的整合和分析,展示了如何获取男女最喜爱的电影以及评分标准差,从而找出最受争议的电影。
摘要由CSDN通过智能技术生成

MovieLens 1M数据集下载地址:https://grouplens.org/datasets/movielens/1m/

为方便,我已将数据集防止在csdn上,方便下载。

地址:https://download.csdn.net/download/m0_52945258/20415963?spm=1001.2014.3001.5501

read_table

read_table是一个数据读入工具,将数据读入到一个DataFrame中,例如,在本次数据处理的例子中,我们先
import pandas as pd

uname = ['user_id', 'gender', 'age', 'occupation', 'zip']
users = pd.read_table(r'ml-1m\users.dat', sep='::', header=None, names=uname,engine='python')

sep=' ':表示的是分隔符,比如说,在这个例子中,原数据集是以::来分隔的,所以我们的分隔符是'::',如果是txt文件,则我们的分隔符是制表符,‘\t’

header=None 表示txt文件的第一行不是列的名字,是数据。如果你的数据集一开始的第一列是数据名称,则不需要加这个,如果不是,则需要表示出来没有标题。

names表示这个DataFrame的标题是什么

运行结果:

 如果是需要处理txt文件,具体查看博客:https://blog.csdn.net/u014453898/article/details/86601224

merge

data=pd.merge(pd.merge(ratings,users),movies)

将多个表合并。

pivot_table

mean_ratings = data.pivot_table(values ='rating', index='title', columns ='gender', aggfunc='mean')

pivot_table具体用法可以查看博客:https://www.cnblogs.com/Yanjy-OnlyOne/p/11195621.html

写的超级好)

pivot_table( values=None, index=None, columns=None,aggfunc='mean')

主要的四个参数分别是values, index, columns, aggfunc

index表示索引,可以表示为标题吧(行标)

如果想要用两个索引值,就需要将索引用一个中括号阔起来,比如

df=pd.pivot_table(data,index=['  ','  '])

Values可以对需要的计算数据进行筛选

columns相当于对列进行索引、分类,和index差不多(列标)

aggfunc相当于是我们对数据聚合的操作,取平均数

groupby

具体用法请看博文:https://www.yiibai.com/pandas/python_pandas_groupby.html

主要就是通过后面的内容对数据进行分组

loc

数据选取函数,主要用法见博文:https://www.jianshu.com/p/1115699e0674

选取符合的数据


mean_ratings = mean_ratings.loc[active_titles]

sort_values

  • DataFrame.sort_values(by=‘##’,axis=0,ascending=True, inplace=False, na_position=‘last’)

 主要用到by和ascending

by:指定列名(axis=0或’index’)或索引值(axis=1或’columns’)

ascending:是否按指定列的数组升序排列,默认为True,即升序排列

在本题中的应用

top_female_ratings=mean_ratings.sort_values(by='F',ascending=False)

之后,我们想要查看男女分歧最大的电影,所以我们需要在mean_rateings中间加入一行,表示男女分数的平均差,加入和排序方式如下:


mean_ratings['diff'] = mean_ratings['M'] - mean_ratings['F']
sort_by_diff = mean_ratings.sort_values(by='diff')

想要得到男生最喜欢的电影,则需要对这个这个进行逆向排序

print(sort_by_diff[::-1][:3])

最后,得到所以人分歧最大的电影,则

rating_std = data.groupby('title')['rating'].size()
print(rating_std)
rating_std = rating_std.loc[active_titles]
sorted_rating_std=rating_std.sort_values(ascending=False)

完整代码:


 

# coding=gbk

import pandas as pd

uname = ['user_id', 'gender', 'age', 'occupation', 'zip']
users = pd.read_table(r'ml-1m/users.dat', sep='::', header=None, names=uname, engine='python')
#print(users)
rnames = ['user_id', 'movie_id', 'rating', 'timestamp']
ratings = pd.read_table(r'ml-1m/ratings.dat', header=None, sep='::', names=rnames, engine='python')


mnames = ['movie_id', 'title', 'genres']
movies = pd.read_table(r'ml-1m/movies.dat', header=None, sep='::', names=mnames, engine='python')

data=pd.merge(pd.merge(ratings,users),movies)
#print(data)

#index  表示索引,values表示所要进行分析的数据, columns允许选择一个或多个列,以columns作为分组的列
mean_ratings = data.pivot_table(values ='rating', index='title', columns ='gender', aggfunc='mean')

ratings_by_title = data.groupby('title').size() #索引

active_titles = ratings_by_title.index[ratings_by_title >= 250] #找出其评论大于250 的索引


mean_ratings = mean_ratings.loc[active_titles]
#print(mean_ratings[:5])

top_female_ratings=mean_ratings.sort_values(by='F',ascending=False)
#print(top_female_ratings)

rating_std = data.groupby('title')['rating'].size()
print(rating_std)
rating_std = rating_std.loc[active_titles]
sorted_rating_std=rating_std.sort_values(ascending=False)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值