四大卷积设计

1. separable convolution 

将逐点卷积和逐通道卷积分开。

逐点卷积:有几张特征图就有几个卷积核

逐通道卷积:单独通道卷积

2. residual bottleneck

ResNet

3. channel shuffling

def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.size()
    channels_per_group = num_channels // groups

    # reshape: b, num_channels, h, w  -->  b, groups, channels_per_group, h, w
    x = x.view(batchsize, groups, channels_per_group, height, width)

    # channelshuffle
    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x

4. structural re-parameterization  结构重参数化

首先将 3X3,1X1和identity全部变成3X3卷积(1X1卷积周边补0)

然后将这三个及逆行相加,得到新的3X3卷积,这样就可以得到使用一个3X3卷积表示。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值