pandas入门(7)——数据清洗
在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载、清理、转换以及重塑。有时,存储在文件和数据库中的数据的格式不适合某个特定的任务。许多研究者都选择使用通用编程语言(如Python、Perl、R或Java)或UNIX文本处理工具(如sed或awk)对数据格式进行专门处理。pandas和内置的Python标准库提供了一组高级的、灵活的、快速的工具,可以轻松地将数据规整为想要的格式
一、处理缺失数据
在许多数据分析工作中,缺失数据是经常发生的。pandas的目标之一就是尽量轻松地处理缺失数据。例如,pandas对象的所有描述性统计默认都不包括缺失数据
缺失数据在pandas中呈现的方式有些不完美,但对于大多数用户可以保证功能正常。对于数值数据,pandas使用浮点值NaN(Not a Number)表示缺失数据。我们称其为哨兵值,可以方便的检测出来:
In [1]: string_data = pd.Series(['aardvark', 'artichoke', np.nan, 'avocado'])
In [3]: string_data.isnull()
Out[3]:
0 False
1 False
2 True
3 False
在pandas中,我们采用了R语言中的惯用法,即将缺失值表示为NA,它表示不可用not available。在统计应用中,NA数据可能是不存在的数据或者虽然存在,但是没有观察到(例如,数据采集中发生了问题)。当进行数据清洗以进行分析时,最好直接对缺失数据进行分析,以判断数据采集的问题或缺失数据可能导致的偏差。
Python内置的None值在对象数组中也可以作为NA:
In [4]: string_data[0] = None
In [5]: string_data.isnull()
Out[5]:
0 True
1 False
2 True
3 False
pandas项目中还在不断优化内部细节以更好处理缺失数据,像用户API功能,例如pandas.isnull,去除了许多恼人的细节
1、滤除缺失数据
1.1 Series对象
通过pandas.isnull或布尔索引的手工方法,但dropna可能会更实用一些。对于一个Series,dropna返回一个仅含非空数据和索引值的Series:
In [6]: from numpy import nan as NA
In [7]: data = pd.Series([1, NA, 3.5, NA, 7])
In [8]: data.dropna()
Out[8]:
0 1.0
2 3.5
4 7.0
这等价于:
In [9]: data[data.notnull()]
Out[9]:
0 1.0
2 3.5
4 7.0
1.2 DataFrame对象
dropna默认丢弃任何含有缺失值的行,如
In [10]: data = pd.DataFrame([[1., 6.5, 3.], [1., NA, NA],
....: [NA, NA, NA], [NA, 6.5, 3.]])
In [11]: cleaned = data.dropna()
In [12]: data
Out[12]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
In [13]: cleaned
Out[13]:
0 1 2
0 1.0 6.5 3.0
传入how='all’将只丢弃全为NA的那些行:
In [24]: data.dropna(how='all')
Out[24]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
3 NaN 6.5 3.0
用这种方式丢弃列,只需传入axis=1即可:
In [25]: data[4] = NA
In [26]: data
Out[26]:
0 1 2 4
0 1.0 6.5 3.0 NaN
1 1.0 NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN 6.5 3.0 NaN
In [27]: data.dropna(axis=1, how='all')
Out[27]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
涉及时间序列数据,假设你只想留下一部分观测数据,可以用thresh参数实现此目的:
n [27]: df = pd.DataFrame(np.random.randn(7, 3))
In [28]: df.iloc[:4, 1] = NA
In [29]: df.iloc[:2, 2] = NA
In [30]: df
Out[30]:
0 1 2
0 -0.204708 NaN NaN
1 -0.555730 NaN NaN
2 0.092908 NaN 0.769023
3 1.246435 NaN -1.296221
4 0.274992 0.228913 1.352917
5 0.886429 -2.001637 -0.371843
6 1.669025 -0.438570 -0.539741
In [31]: df.dropna()
Out[31]:
0 1 2
4 0.274992 0.228913 1.352917
5 0.886429 -2.001637 -0.371843
6 1.669025 -0.438570 -0.539741
In [32]: df.dropna(thresh=2)
Out[32]:
0 1 2
2 0.092908 NaN 0.769023
3 1.246435 NaN -1.296221
4 0.274992 0.228913 1.352917
5 0.886429 -2.001637 -0.371843
6 1.669025 -0.438570 -0.539741
2、填充缺失数据
有时不想滤除缺失数据(有可能会丢弃跟它有关的其他数据),而是希望通过其他方式填补那些“空洞”。对于大多数情况而言,fillna方法是最主要的函数。通过一个常数调用fillna就会将缺失值替换为那个常数值:
In [33]: df.fillna(0)
Out[33]:
0 1 2
0 -0.204708 0.000000 0.000000
1 -0.555730 0.000000 0.000000
2 0.092908 0.000000 0.769023
3 1.246435 0.000000 -1.296221
4 0.274992 0.228913 1.352917
5 0.886429 -2.001637 -0.371843
6 1.669025 -0.438570 -0.539741
若是通过一个字典调用fillna,就可以实现对不同的列填充不同的值:
In [34]: df.fillna({1: 0.5, 2: 0})
Out[34]:
0 1 2
0 -0.204708 0.500000 0.000000
1 -0.555730 0.500000 0.000000
2 0.092908 0.500000 0