poj1315 Don‘t Get Rooked (dfs加回溯)

本文介绍了一种使用回溯算法解决八皇后问题的方法,并详细解释了如何通过递归搜索来寻找棋盘上放置皇后的位置,使得任意两个皇后不会在同一行、同一列或同一斜线上。代码实现了对于任意大小的棋盘求解最多可以放置多少个皇后。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
char da[108][108]; 
int hs[108][108];
int ans;//全局变量记录放车数量的最大值。
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
int n;
void update(int x,int y,int val)
{
	for(int i=0;i<4;i++)//上下左右四个方向都不能放棋子
	{
		int tx=x;
		int ty=y;
		while(1)
		{
			if(tx<0 || tx>n || ty<0 || ty>n)
			{
				break;
			}
			if(da[tx][ty]!='.')
				break;
				
			hs[tx][ty]=hs[tx][ty]+val;
			tx=tx+dx[i];
			ty=ty+dy[i];
		}
	}
}
void dfs(int x,int y,int num)
{
	if(y==n)//如果找到最底端,就换一列,从第一个开始找。
	{
		x++;
		y=0;
	}
	if(x==n)//全部找完之后找num(已找到个数)(理论值)与每行每列至少有一个哪一个多?
	{
		ans=max(ans,num);
		return ; 
	}
	if(da[x][y]=='.'&& hs[x][y]==0)//说明已经找到一个
	{
	    {
	        update(x,y,1);//该点上下左右列所有点都附成1说明已经不能放车了
		   dfs(x,y+1,num+1);//理论值变大1个寻找到底。
		   //找到这种情况的可放车的个数
	    }
		
		update(x,y,-1);//回溯
	}//换一种情况
	dfs(x,y+1,num);//找下一个点
}
int main()
{
    int i;
	while(1)
	{
		cin>>n;
		if(n==0)
         break;
		memset(hs,0,sizeof(hs));
		for(i=0;i<n;i++)
			cin>>da[i];
		ans=0;
		dfs(0,0,0);
		cout<<ans<<endl;
	} 
	return 0;
} 
POJ 1321 排兵布阵问题可以使用 DFS 算法求解。 题目要求在一个 n x n 的棋盘上,放置 k 个棋子,其中每行、每列都最多只能有一个棋子。我们可以使用 DFS 枚举每个棋子的位置,对于每个棋子,尝试将其放置在每一行中未被占用的位置上,直到放置了 k 个棋子。在 DFS 的过程中,需要记录每行和每列是否已经有棋子,以便在尝试放置下一个棋子时进行判断。 以下是基本的 DFS 模板代码: ```python def dfs(row, cnt): global ans if cnt == k: ans += 1 return for i in range(row, n): for j in range(n): if row_used[i] or col_used[j] or board[i][j] == '.': continue row_used[i] = col_used[j] = True dfs(i + 1, cnt + 1) row_used[i] = col_used[j] = False n, k = map(int, input().split()) board = [input() for _ in range(n)] row_used = [False] * n col_used = [False] * n ans = 0 dfs(0, 0) print(ans) ``` 其中,row 代表当前尝试放置棋子的行数,cnt 代表已经放置的棋子数量。row_used 和 col_used 分别表示每行和每列是否已经有棋子,board 则表示棋盘的状态。在尝试放置棋子时,需要排除掉无法放置的位置,即已经有棋子的行和列,以及棋盘上标记为 '.' 的位置。当放置了 k 个棋子时,即可计数一次方案数。注意,在回溯时需要将之前标记为已使用的行和列重新标记为未使用。 需要注意的是,在 Python 中,递归深度的默认限制为 1000,可能无法通过本题。可以通过以下代码来解除限制: ```python import sys sys.setrecursionlimit(100000) ``` 完整代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值