java基于混合推荐算法的个性化新闻推荐系统-计算机毕业设计

一、项目介绍
本论文主要阐述了基于Java的新闻管理系统的设计与实现过程,论文首先介绍了系统开发过程中使用的技术和开发工具,接着简单介绍了系统的功能模块分析和设计,然后介绍了数据库的需求分析和设计,最后详细介绍了系统的实现过程。
本系统分为管理员和普通用户两种角色,实现了新闻发布、新闻浏览、新闻点赞、新闻分类管理、系统日志监控、新闻搜索等功能,方便用户更好的浏览和管理新闻信息。本系统是基于B/S架构的信息管理系统,使用了SpringMVC、Mybatis、Spring框架技术,MyEclipse集成开发环境以及MySQL数据库。
选题的意义:随着互联网信息技术的不断发展,目前我们正处于一个信息爆炸的时代,同时也面临着信息过载的问题,即难以从网络中庞大的新闻源中找到自己感兴趣的新闻。新闻服务提供商通常使用个性化推荐系统向用户进行推荐,个性化新闻推荐的传统方法包括基于内容推荐、基于协同过滤推荐和这两种技术的混合版本。传统的推荐算法都没有考虑到用户在浏览记录上的时间顺序,而用户历史记录阅读的顺序信息可以更好地反映一段时间内用户兴趣的变化和多样性。基于此问题,本文设计实现了一种基于混合推荐算法的个性化新闻推荐系统,
本文的主要工作和创新点如下:
(1)针对传统推荐算法忽略了用户浏览行为的时间先后顺序,本文提出一种改进的循环神经网络算法模型,该模型使用基于注意力的并行卷积神经网络来聚合用户的兴趣特征,并使用基于注意力机制的递归神经网络来挖掘隐藏的时间序列特征。
(2)为了改善单一推荐算法在某些应用场景推荐效果不足的问题,本文提出一个混合推荐算法模型,使用加权混合的推荐策略给用户推荐个性化新闻。

二、开发环境
开发语言:Java
框架:springboot
JDK版本:JDK1.8
服务器:tomcat7
数据库:mysql
数据库工具:Navicat11
开发软件:eclipse/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值