🌟欢迎来到 我的博客 —— 探索技术的无限可能!
文章描述
- 数据分析:查看变量间相关性以及找出关键变量。
机器学习实战 —— 工业蒸汽量预测(一) - 数据特征工程对数据精进:异常值处理、归一化处理以及特征降维。
机器学习实战 —— 工业蒸汽量预测(二) - 模型训练(涉及主流ML模型):决策树、随机森林,lightgbm等。
机器学习实战 —— 工业蒸汽量预测(三) - 模型验证:评估指标以及交叉验证等。
机器学习实战 —— 工业蒸汽量预测(四) - 特征优化:用lgb对特征进行优化。
机器学习实战 —— 工业蒸汽量预测(五) - 模型融合:进行基于stacking方式模型融合。
机器学习实战 —— 工业蒸汽量预测(六)
背景描述
- 背景介绍
火力发电的基本原理是:燃料在燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,然后汽轮机带动发电机旋转,产生电能。在这一系列的能量转化中,影响发电效率的核心是锅炉的燃烧效率,即燃料燃烧加热水产生高温高压蒸汽。锅炉的燃烧效率的影响因素很多,包括锅炉的可调参数,如燃烧给量,一二次风,引风,返料风,给水水量;以及锅炉的工况,比如锅炉床温、床压,炉膛温度、压力,过热器的温度等。
- 相关描述
经脱敏后的锅炉传感器采集的数据(采集频率是分钟级别),根据锅炉的工况,预测产生的蒸汽量。
- 结果评估
预测结果以mean square error作为评判标准。
数据说明
数据分成训练数据(train.txt)和测试数据(test.txt),其中字段”V0”-“V37”,这38个字段是作为特征变量,”target”作为目标变量。选手利用训练数据训练出模型,预测测试数据的目标变量,排名结果依据预测结果的MSE(mean square error)。
数据来源
http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_test.txt
http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_train.txt
实战内容
1.数据分析
导入模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
读取数据文件
使用Pandas库read_csv()
函数进行数据读取,分割符为‘\t’
train_data_file = "./zhengqi_train.txt"
test_data_file = "./zhengqi_test.txt"
train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')
1.1 查看数据信息
查看特征变量信息
train_data.info()
可以看到训练集数据共有2888个样本,数据中有V0-V37共计38个特征变量,变量类型都为数值类型,所有数据特征没有缺失值数据。
数据字段由于采用了脱敏处理,删除了特征数据的具体含义。其中target字段为标签变量。
test_data.info()
测试集数据共有1925个样本,数据中有V0-V37共计38个特征变量,变量类型都为数值类型
查看数据统计信息:
train_data.describe()
test_data.describe()
上面数据显示了数据的统计信息,例如样本数,数据的均值mean,标准差std,最小值,最大值等
查看数据字段信息:
train_data.head()
test_data.head()
1.2 可视化探索数据
箱式图
查看数据分布图
查看特征变量‘V0’的数据分布直方图,并绘制Q-Q图查看数据是否近似于正态分布
查看查看所有数据的直方图和Q-Q图,查看训练集的数据是否近似于正态分布
由上面的数据分布图信息可以看出,很多特征变量(如’V1’,‘V9’,‘V24’,'V28’等)的数据分布不是正态的,数据并不跟随对角线,后续可以使用数据变换对数据进行转换。
对比同一特征变量‘V0’下,训练集数据和测试集数据的分布情况,查看数据分布是否一致
查看所有特征变量下,训练集数据和测试集数据的分布情况,分析并寻找出数据分布不一致的特征变量。
查看特征’V5’, ‘V17’, ‘V28’, ‘V22’, ‘V11’, 'V9’数据的数据分布
由上图的数据分布可以看到特征’V5’,‘V9’,‘V11’,‘V17’,‘V22’,‘V28’ 训练集数据与测试集数据分布不一致,会导致模型泛化能力差,采用删除此类特征方法。
# 合并训练集和测试集数据,并可视化训练集和测试集数据特征分布图
drop_columns = ['V5','V9','V11','V17','V22','V28']
可视化线性回归关系
查看特征变量‘V0’与’target’变量的线性回归关系
1.2.1 查看变量间线性回归关系
1.2.2 查看特征变量的相关性
data_train1 = train_data.drop(['V5','V9','V11','V17','V22','V28'],axis=1)
train_corr = data_train1.corr()
train_corr
相关性热力图
找出相关程度
上图为所有特征变量和target变量两两之间的相关系数,由此可以看出各个特征变量V0-V37之间的相关性以及特征变量V0-V37与target的相关性。
1.2.3 查找重要变量
查找出特征变量和target变量相关系数大于0.5的特征变量
寻找K个最相关的特征信息
drop_columns.clear()
drop_columns = ['V5','V9','V11','V17','V22','V28']
threshold = 0.5
corr_matrix = data_train1.corr().abs()
drop_col=corr_matrix[corr_matrix["target"]<threshold].index
由于’V14’, ‘V21’, ‘V25’, ‘V26’, ‘V32’, ‘V33’, 'V34’特征的相关系数值小于0.5,故认为这些特征与最终的预测target值不相关,删除这些特征变量;
train_x = train_data.drop(['target'], axis=1)
data_all = pd.concat([train_x,test_data])
data_all.drop(drop_columns,axis=1,inplace=True)
data_all.head()
cols_numeric=list(data_all.columns)
def scale_minmax(col):
return (col-col.min())/(col.max()-col.min())
data_all[cols_numeric] = data_all[cols_numeric].apply(scale_minmax,axis=0)
data_all[cols_numeric].describe()
train_data_process = train_data[cols_numeric]
train_data_process = train_data_process[cols_numeric].apply(scale_minmax,axis=0)
test_data_process = test_data[cols_numeric]
test_data_process = test_data_process[cols_numeric].apply(scale_minmax,axis=0)
cols_numeric_left = cols_numeric[0:13]
cols_numeric_right = cols_numeric[13:]
图1
图2
2.数据特征工程
2.1数据预处理和特征处理
导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
# 读取数据
train_data_file = "./zhengqi_train.txt"
test_data_file = "./zhengqi_test.txt"
train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')
数据总览
train_data.describe()
2.1.1 异常值分析
异常值分析
删除异常值
train_data = train_data[train_data['V9']>-7.5]
train_data.describe()
test_data.describe()
2.1.2 归一化处理
from sklearn import preprocessing
features_columns = [col for col in train_data.columns if col not in ['target']]
min_max_scaler = preprocessing.MinMaxScaler()
min_max_scaler = min_max_scaler.fit(train_data[features_columns])
train_data_scaler = min_max_scaler.transform(train_data[features_columns])
test_data_scaler = min_max_scaler.transform(test_data[features_columns])
train_data_scaler = pd.DataFrame(train_data_scaler)
train_data_scaler.columns = features_columns
test_data_scaler = pd.DataFrame(test_data_scaler)
test_data_scaler.columns = features_columns
train_data_scaler['target'] = train_data['target']
train_data_scaler.describe()
test_data_scaler.describe()
查看数据集情况
查看特征’V5’, ‘V17’, ‘V28’, ‘V22’, ‘V11’, 'V9’数据的数据分布
这几个特征下,训练集的数据和测试集的数据分布不一致,会影响模型的泛化能力,故删除这些特征
2.1.3 特征相关性
2.2 特征降维
mcorr=mcorr.abs()
numerical_corr=mcorr[mcorr['target']>0.1]['target']
print(numerical_corr.sort_values(ascending=False))
index0 = numerical_corr.sort_values(ascending=False).index
print(train_data_scaler[index0].corr('spearman'))
2.2.1 相关性初筛
features_corr = numerical_corr.sort_values(ascending=False).reset_index()
features_corr.columns = ['features_and_target', 'corr']
features_corr_select = features_corr[features_corr['corr']>0.3] # 筛选出大于相关性大于0.3的特征
print(features_corr_select)
select_features = [col for col in features_corr_select['features_and_target'] if col not in ['target']]
new_train_data_corr_select = train_data_scaler[select_features+['target']]
new_test_data_corr_select = test_data_scaler[select_features]
2.2.2 多重共线性分析
# !pip install statsmodels -i https://pypi.tuna.tsinghua.edu.cn/simple
from statsmodels.stats.outliers_influence import variance_inflation_factor #多重共线性方差膨胀因子
#多重共线性
new_numerical=['V0', 'V2', 'V3', 'V4', 'V5', 'V6', 'V10','V11',
'V13', 'V15', 'V16', 'V18', 'V19', 'V20', 'V22','V24','V30', 'V31', 'V37']
X=np.matrix(train_data_scaler[new_numerical])
VIF_list=[variance_inflation_factor(X, i) for i in range(X.shape[1])]
VIF_list
2.2.3 PCA处理降维
from sklearn.decomposition import PCA #主成分分析法
#PCA方法降维
#保持90%的信息
pca = PCA(n_components=0.9)
new_train_pca_90 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])
new_test_pca_90 = pca.transform(test_data_scaler)
new_train_pca_90 = pd.DataFrame(new_train_pca_90)
new_test_pca_90 = pd.DataFrame(new_test_pca_90)
new_train_pca_90['target'] = train_data_scaler['target']
new_train_pca_90.describe()
train_data_scaler.describe()
PCA方法降维
保留16个主成分
pca = PCA(n_components=0.95)
new_train_pca_16 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])
new_test_pca_16 = pca.transform(test_data_scaler)
new_train_pca_16 = pd.DataFrame(new_train_pca_16)
new_test_pca_16 = pd.DataFrame(new_test_pca_16)
new_train_pca_16['target'] = train_data_scaler['target']
new_train_pca_16.describe()
3.模型训练
3.1 回归及相关模型
# !pip install lightgbm
导入包
from sklearn.linear_model import LinearRegression #线性回归
from sklearn.neighbors import KNeighborsRegressor #K近邻回归
from sklearn.tree import DecisionTreeRegressor #决策树回归
from sklearn.ensemble import RandomForestRegressor #随机森林回归
from sklearn.svm import SVR #支持向量回归
import lightgbm as lgb #lightGbm模型
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split # 切分数据
from sklearn.metrics import mean_squared_error #评价指标
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit
## 切分训练数据和线下验证数据
#采用 pca 保留16维特征的数据
new_train_pca_16 = new_train_pca_16.fillna(0)
train = new_train_pca_16[new_test_pca_16.columns]
target = new_train_pca_16['target']
# 切分数据 训练数据80% 验证数据20%
train_data,test_data,train_target,test_target=train_test_split(train,target,test_size=0.2,random_state=0)
3.1.1 多元线性回归模型
定义绘制模型学习曲线函数
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
print(train_scores_mean)
print(test_scores_mean)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
绘制学习曲线:只需要传入算法(或实例对象)、X_train、X_test、y_train、y_test
当使用该函数时传入算法,该算法的变量要进行实例化,如:PolynomialRegression(degree=2),变量 degree 要进行实例化
def plot_learning_curve_old(algo, X_train, X_test, y_train, y_test):
train_score = []
test_score = []
for i in range(10, len(X_train)+1, 10):
algo.fit(X_train[:i], y_train[:i])
y_train_predict = algo.predict(X_train[:i])
train_score.append(mean_squared_error(y_train[:i], y_train_predict))
y_test_predict = algo.predict(X_test)
test_score.append(mean_squared_error(y_test, y_test_predict))
plt.plot([i for i in range(1, len(train_score)+1)],
train_score, label="train")
plt.plot([i for i in range(1, len(test_score)+1)],
test_score, label="test")
plt.legend()
plt.show()
线性回归模型学习曲线
3.1.2 KNN近邻回归
for i in range(3,10):
clf = KNeighborsRegressor(n_neighbors=i) # 最近三个
clf.fit(train_data, train_target)
score = mean_squared_error(test_target, clf.predict(test_data))
print("KNeighborsRegressor: ", score)
绘制K近邻回归学习曲线——K近邻回归
3.1.3决策树回归
clf = DecisionTreeRegressor()
clf.fit(train_data, train_target)
score = mean_squared_error(test_target, clf.predict(test_data))
print("DecisionTreeRegressor: ", score)
决策树回归
3.1.4 随机森林回归
clf = RandomForestRegressor(n_estimators=200) # 200棵树模型
clf.fit(train_data, train_target)
score = mean_squared_error(test_target, clf.predict(test_data))
print("RandomForestRegressor: ", score)
# plot_learning_curve_old(RandomForestRegressor(n_estimators=200), train_data, test_data, train_target, test_target)
X = train_data.values
y = train_target.values