HashMap在多线程中并不安全,为了解决HashMap的并发安全性,可以使用
1、Collections.synchronizedMap()方法将普通HashMap变为线程安全的
2、更高效的做法是使用Java自带的ConcurrentHashMap类
ConcurrentHashMap的用法这里就不多讲,与HashMap用法相似,只是添加了线程安全机制
一、ConcurrentHashMap属性分析
static class Node<K,V> implements Map.Entry<K,V>;
整个类就是一个Node[],也就是每个HashMap存储数据的单元就是一个Node
private transient volatile int sizeCtl;//默认为0,初始化时为-1
当初始化或扩容完成时,作为下一个扩容阀值的大小
transient volatile Node<K,V>[] table;
这个就是我们的哈希表
private transient volatile Node<K,V>[] nextTable;
这个是我们扩容时新的哈希表
static final class ForwardingNode<K,V> extends Node<K,V>
这个代表如果某个bin迁移完毕,用该类代表迁移完毕bin的头结点。
简单来说,就是当我们遇到扩容时,某个哈希节点的所有的值已经从旧哈希表上转移到了新的表上,此时线程就会将该节点的头结点转变为ForwardingNode,这样的话当下一个线程试图转移该节点时就会失败,保证节点转移的线程安全
static final class TreeBin<K,V> extends Node<K,V>
当我们的链表个数达到阀值以后,就会将链表转化为红黑树(同HashMap),该类代表的就是红黑树的头结点
static final class TreeNode<K,V> extends Node<K,V>
该类代表红黑树的普通节点
二、方法分析
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
构造方法
initialCapacity:初始化哈希表的大小的数值
loadFactor:负载因子,就是我们说的0.75,也就是当当前的存储数据的大小为当前容量大小的0.75倍时扩容
concurrencyLevel:就是并发操作当前Map的线程数
1、我们注意到,当初始化容量要小于线程数量的时候,我们会把初始化容量与线程数等值(至少做到一个县城能操作一个哈希节点)。
2、我们同时还能看到,我们初始化进去的容量大小不一定是哈希表的大小,实际大小需要经过计算得来。
3、jdk8中的ConcurrentHashMap实现了懒加载,就是在使用时才会创建哈希表
get
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
1、首先我们会调用spread方法讲求到的哈希值转变为正数(在ConcurrentHashMap中默认正数的哈希值是有效的)
2、接下来我们回去检查哈希表中该哈希值对相应的节点下是否有链表(在这之前会先做哈希扰动),如果有,则比对哈希值并返回
3、如果没有(eh<0)则由两种情况,第一种情况是该链表处于移动过程,呢我们就会调用方法去新的哈希表中找该节点;第二种情况是该处已经由链表变为了红黑树,则我们掉用树的查找方式查找
put
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
(相当长的代码)
1、首先同HashMap一样,我们会先求出Key的哈希值(中间一系列操作比如spread和哈希扰动),求出来后锁定相应哈希表的位置
2、如果此时该位置没有链表,我们就直接创建节点加入
3、如果该处有链表,我们就将搜索链表,如果遇到相同的Key值,我们就将新的value值替换就得value值
4、如果此时该链表处于移动的状态,比如线程1在移动链表,线程2在插入节点,此时线程2会帮助线程1移动链表,也就是将该链表加锁,加锁后该链表只能继续移动,不能被其他线程修改
5、如果此时在链表中没有找到Key值相同的节点,我们就会将该节点插入链表
6、如果此时链表已经变成了红黑树,我们就会调用TreeBin方法将该节点包装成树节点
注意:
1、在整个过程中binCount值用来计数,判断链表是否需要升级成红黑树
2、我们之前提到 ConcurrentHashMap是懒加载,当我们插入时如果发现还未创建哈希表,我们就会调用Inittable方法创建哈希表(该方法底层是cas方法,保证只创建一个哈希表)