消息传递范式

消息传递图神经网络

一、消息传递范式介绍

1.1 图卷积网络模型(GCN)的工作:

以下为链接的部分英文的翻译:
在这里插入图片描述
首先,每个节点获取有关其连接节点的所有特征的信息,并将聚合函数(例如 sum 或 average)应用于这些值,以确保所有表示都具有相同的大小。无论我们最终选择什么函数,它都必须是排列和顺序不变的。这是至关重要的。
之后,得到的向量通过一个密集的神经网络层(这意味着它乘以某个矩阵),然后在其上使用非线性激活函数来获得新的向量表示。
接下来,我们继续循环执行这三个步骤:

  • 对于每个节点,聚合其邻居的向量(现在是更新的向量)
  • 通过密集的神经网络层传递结果值
  • 应用非线性。

看起来有点像神经网络的迭代,但是这里对每个节点就行更新。这样做的次数与我们的网络层数一样多。但 GCN 中的节点在每一层都有不同的表示。

  • 在第 0 层,它们将与节点的特征相同。
  • 在第 k 层,为了计算一个节点的表示,我们将遍历它的邻居,从前一层 k -1 中获取它们的表示并将它们平均在一起。然后我们将使用参数矩阵对它们进行转换,并将来自 k -1 的节点自己的消息添加到该参数矩阵中。结果值将通过非线性函数(例如 ReLU)传递。
  • 最后,在节点的表示经过隐藏层中的所有变换之后,我们将得到最终的嵌入。

我们在每一层应用了两个可调参数矩阵——一个用于将节点表示的值从 k -1 转换,另一个用于转换来自相邻节点的聚合消息(再次从 k -1 转换)

在训练期间,我们正在找出丰富节点了解自身信息的最佳方式。它实际上归结为:我们想要对节点自己的特征向量进行多少非线性变换,以及我们需要对邻居的特征向量应用多少修改。根据我们使用的矩阵,我们可以让节点完全专注于关于自身的信息,而忽略来自其环境的消息,或者相反,或者两者兼而有之,以最终帮助我们获得最佳预测为准。

注意:我们设置的时间步长越多,来自我们节点的信号将传播得越远。如果我们正在处理一个平均大小的图,并且消息通过边进行 3 到 5 跳,这将足以让一个节点影响图中几乎所有其他节点的表示(在不同程度上这取决于距离)

1.2基于消息传递范式的聚合邻接节点信息来更新中心节点信息的过程:
  1. 图中黄色方框部分展示的是一次邻接节点信息传递到中心节点的过程:B节点的邻接节点(A,C)的信息经过变换聚合到B节点,接着B节点信息与邻接节点聚合信息一起经过变换得到B节点的新的节点信息。同时,分别如红色和绿色方框部分所示,遵循同样的过程,C、D节点的信息也被更新。实际上,同样的过程在所有节点上都进行了一遍,所有节点的信息都更新了一遍。
  2. 这样的“邻接节点信息传递到中心节点的过程”会进行多次。如图中蓝色方框部分所示,A节点的邻接节点(B,C,D)的已经发生过一次更新的节点信息,经过变换、聚合、再变换产生了A节点第二次更新的节点信息。多次更新后的节点信息就作为节点表征。
    在这里插入图片描述

也就是1.1中提到的,第i层对某个节点的变换。

1.2.1 Pytorch Geometric官网上范式公式

消息传递图神经网络遵循上述的“聚合邻接节点信息来更新中心节点信息的过程”,来生成节点表征。用 x i ( k − 1 ) ∈ R F \mathbf{x}^{(k-1)}_i\in\mathbb{R}^F xi(k1)RF表示 ( k − 1 ) (k-1) (k1)层中节点 i i i的节点表征, e j , i ∈ R D \mathbf{e}_{j,i} \in \mathbb{R}^D ej,iRD 表示从节点 j j j到节点 i i i的边的属性,消息传递图神经网络可以描述为
x i ( k ) = γ ( k ) ( x i ( k − 1 ) , □ j ∈ N ( i )   ϕ ( k ) ( x i ( k − 1 ) , x j ( k − 1 ) , e j , i ) ) , \mathbf{x}_i^{(k)} = \gamma^{(k)} \left( \mathbf{x}_i^{(k-1)}, \square_{j \in \mathcal{N}(i)} \, \phi^{(k)}\left(\mathbf{x}_i^{(k-1)}, \mathbf{x}_j^{(k-1)},\mathbf{e}_{j,i}\right) \right), xi(k)=γ(k)(xi(k1),jN(i)ϕ(k)(xi(k1),xj(k1),ej,i)),
其中 □ \square 表示可微分的、具有排列不变性(函数输出结果与输入参数的排列无关)的函数。具有排列不变性的函数有,sum()函数、mean()函数和max()函数。 γ \gamma γ ϕ \phi ϕ表示可微分的函数,如MLPs(多层感知器)。此处内容来源于CREATING MESSAGE PASSING NETWORKS

1.2.2 DGL的消息传递

在这里插入图片描述

二、MessagePassing基类初步分析

Pytorch Geometric(PyG)提供了MessagePassing基类,它封装了“消息传递”的运行流程。通过继承MessagePassing基类,可以方便地构造消息传递图神经网络。构造一个最简单的消息传递图神经网络类,我们只需定义message()方法( ϕ \phi ϕ)、update()方法( γ \gamma γ),以及使用的消息聚合方案aggr="add"aggr="mean"aggr="max")。这一切是在以下方法的帮助下完成的:

  • MessagePassing(aggr="add", flow="source_to_target", node_dim=-2)(对象初始化方法):
    • aggr:定义要使用的聚合方案(“add”、"mean "或 “max”);
    • flow:定义消息传递的流向("source_to_target "或 “target_to_source”);
    • node_dim:定义沿着哪个维度传播,默认值为-2,也就是节点表征张量(Tensor)的哪一个维度是节点维度。节点表征张量x形状为[num_nodes, num_features],其第0维度(也是第-2维度)是节点维度,其第1维度(也是第-1维度)是节点表征维度,所以我们可以设置node_dim=-2
    • 注:MessagePassing(……)等同于MessagePassing.__init__(……)
  • MessagePassing.propagate(edge_index, size=None, **kwargs)
    • 开始传递消息的起始调用,在此方法中messageupdate等方法被调用。
    • 它以edge_index(边的端点的索引)和flow(消息的流向)以及一些额外的数据为参数。
    • 请注意,propagate()不局限于基于形状为[N, N]的对称邻接矩阵进行“消息传递过程”。基于非对称的邻接矩阵进行消息传递(当图为二部图时),需要传递参数size=(N, M)
    • 如果设置size=None,则认为邻接矩阵是对称的。
  • MessagePassing.message(...)
    • 首先确定要给节点 i i i传递消息的边的集合:
      • 如果flow="source_to_target",则是 ( j , i ) ∈ E (j,i) \in \mathcal{E} (j,i)E的边的集合;
      • 如果flow="target_to_source",则是 ( i , j ) ∈ E (i,j) \in \mathcal{E} (i,j)E的边的集合。
    • 接着为各条边创建要传递给节点 i i i的消息,即实现 ϕ \phi ϕ函数。
    • MessagePassing.message(...)方法可以接收传递给MessagePassing.propagate(edge_index, size=None, **kwargs)方法的所有参数,我们在message()方法的参数列表里定义要接收的参数,例如我们要接收x,y,z参数,则我们应定义message(x,y,z)方法。
    • 传递给propagate()方法的参数,如果是节点的属性的话,可以被拆分成属于中心节点的部分和属于邻接节点的部分,只需在变量名后面加上_i_j。例如,我们自己定义的meassage方法包含参数x_i,那么首先propagate()方法将节点表征拆分成中心节点表征和邻接节点表征,接着propagate()方法调用message方法并传递中心节点表征给参数x_i。而如果我们自己定义的meassage方法包含参数x_j,那么propagate()方法会传递邻接节点表征给参数x_j
    • 我们用 i i i表示“消息传递”中的中心节点,用 j j j表示“消息传递”中的邻接节点。
  • MessagePassing.aggregate(...)
    • 将从源节点传递过来的消息聚合在目标节点上,一般可选的聚合方式有sum, meanmax
  • MessagePassing.message_and_aggregate(...)
    • 在一些场景里,邻接节点信息变换和邻接节点信息聚合这两项操作可以融合在一起,那么我们可以在此方法里定义这两项操作,从而让程序运行更加高效。
  • MessagePassing.update(aggr_out, ...):
    • 为每个节点 i ∈ V i \in \mathcal{V} iV更新节点表征,即实现 γ \gamma γ函数。此方法以aggregate方法的输出为第一个参数,并接收所有传递给propagate()方法的参数。

以上内容来源于The “MessagePassing” Base Class

三、MessagePassing子类实例

我们以继承MessagePassing基类的GCNConv类为例,学习如何通过继承MessagePassing基类来实现一个简单的图神经网络。

GCNConv的数学定义为
x i ( k ) = ∑ j ∈ N ( i ) ∪ { i } 1 deg ⁡ ( i ) ⋅ deg ⁡ ( j ) ⋅ ( Θ ⋅ x j ( k − 1 ) ) , \mathbf{x}_i^{(k)} = \sum_{j \in \mathcal{N}(i) \cup \{ i \}} \frac{1}{\sqrt{\deg(i)} \cdot \sqrt{\deg(j)}} \cdot \left( \mathbf{\Theta} \cdot \mathbf{x}_j^{(k-1)} \right), xi(k)=jN(i){i}deg(i) deg(j) 1(Θxj(k1)),
其中,邻接节点的表征 x j ( k − 1 ) \mathbf{x}_j^{(k-1)} xj(k1)首先通过与权重矩阵 Θ \mathbf{\Theta} Θ相乘进行变换,然后按端点的度 deg ⁡ ( i ) , deg ⁡ ( j ) \deg(i), \deg(j) deg(i),deg(j)进行归一化处理,最后进行求和。这个公式可以分为以下几个步骤:

  1. 向邻接矩阵添加自环边。
  2. 对节点表征做线性转换。
  3. 计算归一化系数。
  4. 归一化邻接节点的节点表征。
  5. 将相邻节点表征相加("求和 "聚合)。

步骤1-3通常是在消息传递发生之前计算的。步骤4-5可以使用MessagePassing基类轻松处理。该层的全部实现如下所示。

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree

class GCNConv(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super(GCNConv, self).__init__(aggr='add', flow='source_to_target')
        # "Add" aggregation (Step 5).
        # flow='source_to_target' 表示消息从源节点传播到目标节点
        self.lin = torch.nn.Linear(in_channels, out_channels)

    def forward(self, x, edge_index):
        # x has shape [N, in_channels]
        # edge_index has shape [2, E]

        # Step 1: Add self-loops to the adjacency matrix.
        edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))

        # Step 2: Linearly transform node feature matrix.
        x = self.lin(x)

        # Step 3: Compute normalization.
        row, col = edge_index
        deg = degree(col, x.size(0), dtype=x.dtype)
        deg_inv_sqrt = deg.pow(-0.5)
        norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]

        # Step 4-5: Start propagating messages.
        return self.propagate(edge_index, x=x, norm=norm)

    def message(self, x_j, norm):
        # x_j has shape [E, out_channels]
        # Step 4: Normalize node features.
        return norm.view(-1, 1) * x_j

GCNConv继承了MessagePassing并以"求和"作为领域节点信息聚合方式。该层的所有逻辑都发生在其forward()方法中。在这里,我们首先使用torch_geometric.utils.add_self_loops()函数向我们的边索引添加自循环边(步骤1),以及通过调用torch.nn.Linear实例对节点表征进行线性变换(步骤2)。propagate()方法也在forward方法中被调用,propagate()方法被调用后节点间的信息传递开始执行。

归一化系数是由每个节点的节点度得出的,它被转换为每条边的节点度。结果被保存在形状为[num_edges,]的变量norm中(步骤3)。

message()方法中,我们需要通过norm对邻接节点表征x_j进行归一化处理。

通过以上内容的学习,我们便掌握了创建一个仅包含一次“消息传递过程”的图神经网络的方法。如下方代码所示,我们可以很方便地初始化和调用它:

from torch_geometric.datasets import Planetoid

dataset = Planetoid(root='dataset', name='Cora')
data = dataset[0]

net = GCNConv(data.num_features, 64)
h_nodes = net(data.x, data.edge_index)
print(h_nodes.shape)

通过串联多个这样的简单图神经网络,我们就可以构造复杂的图神经网络模型。我们将在第5节介绍复杂图神经网络模型的构建。

以上主要内容来源于Implementing the GCN Layer

四、MessagePassing基类剖析

__init__()方法中,我们看到程序会检查子类是否实现了message_and_aggregate()方法,并将检查结果赋值给fuse属性。

class MessagePassing(torch.nn.Module):
	def __init__(self, aggr: Optional[str] = "add", flow: str = "source_to_target", node_dim: int = -2):
        super(MessagePassing, self).__init__()
		# 此处省略n行代码
        # Support for "fused" message passing.
        self.fuse = self.inspector.implements('message_and_aggregate')
		# 此处省略n行代码

“消息传递过程”是从propagate方法被调用开始执行的。

class MessagePassing(torch.nn.Module):
    # 此处省略n行代码
    def propagate(self, edge_index: Adj, size: Size = None, **kwargs):
    	# 此处省略n行代码
        # Run "fused" message and aggregation (if applicable).
        if (isinstance(edge_index, SparseTensor) and self.fuse and not self.__explain__):
            coll_dict = self.__collect__(self.__fused_user_args__, edge_index, size, kwargs)

            msg_aggr_kwargs = self.inspector.distribute('message_and_aggregate', coll_dict)
            out = self.message_and_aggregate(edge_index, **msg_aggr_kwargs)

            update_kwargs = self.inspector.distribute('update', coll_dict)
            return self.update(out, **update_kwargs)
        # Otherwise, run both functions in separation.
        elif isinstance(edge_index, Tensor) or not self.fuse:
            coll_dict = self.__collect__(self.__user_args__, edge_index, size, kwargs)

            msg_kwargs = self.inspector.distribute('message', coll_dict)
            out = self.message(**msg_kwargs)
    		# 此处省略n行代码
            aggr_kwargs = self.inspector.distribute('aggregate', coll_dict)
            out = self.aggregate(out, **aggr_kwargs)

            update_kwargs = self.inspector.distribute('update', coll_dict)
            return self.update(out, **update_kwargs)

参数简介:

  • edge_index: 边端点索引,它可以是Tensor类型或SparseTensor类型。
    • 当flow="source_to_target"时,节点edge_index[0]的信息将被传递到节点edge_index[1]
    • 当flow="target_to_source"时,节点edge_index[1]的信息将被传递到节点edge_index[0]
  • size: 邻接节点的数量与中心节点的数量。
    • 对于普通图,邻接节点的数量与中心节点的数量都是N,我们可以不给size传参数,即让size取值为默认值None。
    • 对于二部图,邻接节点的数量与中心节点的数量分别记为M, N,于是我们需要给size参数传一个元组(M, N)
  • kwargs: 图其他属性或额外的数据。

propagate()方法首先检查edge_index是否为SparseTensor类型以及是否子类实现了message_and_aggregate()方法,如是就执行子类的message_and_aggregate方法;否则依次执行子类的message(),aggregate(),update()三个方法。

五、message方法的覆写

前面我们介绍了,传递给propagate()方法的参数,如果是节点的属性的话,可以被拆分成属于中心节点的部分和属于邻接节点的部分,只需在变量名后面加上_i_j。现在我们有一个额外的节点属性,节点的度deg,我们希望meassge方法还能接收中心节点的度,我们对前面GCNConvmessage方法进行改造得到新的GCNConv类:

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree

class GCNConv(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super(GCNConv, self).__init__(aggr='add', flow='source_to_target')
        # "Add" aggregation (Step 5).
        # flow='source_to_target' 表示消息从源节点传播到目标节点
        self.lin = torch.nn.Linear(in_channels, out_channels)

    def forward(self, x, edge_index):
        # x has shape [N, in_channels]
        # edge_index has shape [2, E]

        # Step 1: Add self-loops to the adjacency matrix.
        edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))

        # Step 2: Linearly transform node feature matrix.
        x = self.lin(x)

        # Step 3: Compute normalization.
        row, col = edge_index
        deg = degree(col, x.size(0), dtype=x.dtype)
        deg_inv_sqrt = deg.pow(-0.5)
        norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]

        # Step 4-5: Start propagating messages.
        return self.propagate(edge_index, x=x, norm=norm, deg=deg.view((-1, 1)))

    def message(self, x_j, norm, deg_i):
        # x_j has shape [E, out_channels]
        # deg_i has shape [E, 1]
        # Step 4: Normalize node features.
        return norm.view(-1, 1) * x_j * deg_i


from torch_geometric.datasets import Planetoid

dataset = Planetoid(root='dataset', name='Cora')
data = dataset[0]

net = GCNConv(data.num_features, 64)
h_nodes = net(data.x, data.edge_index)
print(h_nodes.shape)

若一个数据可以被拆分成属于中心节点的部分和属于邻接节点的部分,其形状必须是[num_nodes, *],因此在上方代码的第29行,我们执行了deg.view((-1, 1))操作,使得数据形状为[num_nodes, 1],然后才将数据传给propagate()方法。

六、aggregate方法的覆写

在前面的例子的基础上,我们增加如下的aggregate方法。通过观察运行结果我们可以看到,我们覆写的aggregate方法被调用,同时在super(GCNConv, self).__init__(aggr='add')中传递给aggr参数的值被存储到了self.aggr属性中。

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree

class GCNConv(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super(GCNConv, self).__init__(aggr='add', flow='source_to_target')
        # "Add" aggregation (Step 5).
        # flow='source_to_target' 表示消息从源节点传播到目标节点
        self.lin = torch.nn.Linear(in_channels, out_channels)

    def forward(self, x, edge_index):
        # x has shape [N, in_channels]
        # edge_index has shape [2, E]

        # Step 1: Add self-loops to the adjacency matrix.
        edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))

        # Step 2: Linearly transform node feature matrix.
        x = self.lin(x)

        # Step 3: Compute normalization.
        row, col = edge_index
        deg = degree(col, x.size(0), dtype=x.dtype)
        deg_inv_sqrt = deg.pow(-0.5)
        norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]

        # Step 4-5: Start propagating messages.
        return self.propagate(edge_index, x=x, norm=norm, deg=deg.view((-1, 1)))

    def message(self, x_j, norm, deg_i):
        # x_j has shape [E, out_channels]
        # deg_i has shape [E, 1]
        # Step 4: Normalize node features.
        return norm.view(-1, 1) * x_j * deg_i

    def aggregate(self, inputs, index, ptr, dim_size):
        print('self.aggr:', self.aggr)
        print("`aggregate` is called")
        return super().aggregate(inputs, index, ptr=ptr, dim_size=dim_size)
        

from torch_geometric.datasets import Planetoid

dataset = Planetoid(root='dataset', name='Cora')
data = dataset[0]

net = GCNConv(data.num_features, 64)
h_nodes = net(data.x, data.edge_index)
print(h_nodes.shape)

七、message_and_aggregate方法的覆写

在一些案例中,“消息传递”与“消息聚合”可以融合在一起。对于这种情况,我们可以覆写message_and_aggregate方法,在message_and_aggregate方法中一块实现“消息传递”与“消息聚合”,这样能使程序的运行更加高效。

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree
from torch_sparse import SparseTensor

class GCNConv(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super(GCNConv, self).__init__(aggr='add', flow='source_to_target')
        # "Add" aggregation (Step 5).
        # flow='source_to_target' 表示消息从源节点传播到目标节点
        self.lin = torch.nn.Linear(in_channels, out_channels)

    def forward(self, x, edge_index):
        # x has shape [N, in_channels]
        # edge_index has shape [2, E]

        # Step 1: Add self-loops to the adjacency matrix.
        edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))

        # Step 2: Linearly transform node feature matrix.
        x = self.lin(x)

        # Step 3: Compute normalization.
        row, col = edge_index
        deg = degree(col, x.size(0), dtype=x.dtype)
        deg_inv_sqrt = deg.pow(-0.5)
        norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]

        # Step 4-5: Start propagating messages.
        adjmat = SparseTensor(row=edge_index[0], col=edge_index[1], value=torch.ones(edge_index.shape[1]))
        # 此处传的不再是edge_idex,而是SparseTensor类型的Adjancency Matrix
        return self.propagate(adjmat, x=x, norm=norm, deg=deg.view((-1, 1)))

    def message(self, x_j, norm, deg_i):
        # x_j has shape [E, out_channels]
        # deg_i has shape [E, 1]
        # Step 4: Normalize node features.
        return norm.view(-1, 1) * x_j * deg_i

    def aggregate(self, inputs, index, ptr, dim_size):
        print('self.aggr:', self.aggr)
        print("`aggregate` is called")
        return super().aggregate(inputs, index, ptr=ptr, dim_size=dim_size)

    def message_and_aggregate(self, adj_t, x, norm):
        print('`message_and_aggregate` is called')
        # 没有实现真实的消息传递与消息聚合的操作
 
from torch_geometric.datasets import Planetoid

dataset = Planetoid(root='dataset', name='Cora')
data = dataset[0]

net = GCNConv(data.num_features, 64)
h_nodes = net(data.x, data.edge_index)
# print(h_nodes.shape)

运行程序后我们可以看到,虽然我们同时覆写了message方法和aggregate方法,然而只有message_and_aggregate方法被执行。

八、update方法的覆写

from torch_geometric.datasets import Planetoid
import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree
from torch_sparse import SparseTensor


class GCNConv(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super(GCNConv, self).__init__(aggr='add', flow='source_to_target')
        # "Add" aggregation (Step 5).
        # flow='source_to_target' 表示消息从源节点传播到目标节点
        self.lin = torch.nn.Linear(in_channels, out_channels)

    def forward(self, x, edge_index):
        # x has shape [N, in_channels]
        # edge_index has shape [2, E]

        # Step 1: Add self-loops to the adjacency matrix.
        edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))

        # Step 2: Linearly transform node feature matrix.
        x = self.lin(x)

        # Step 3: Compute normalization.
        row, col = edge_index
        deg = degree(col, x.size(0), dtype=x.dtype)
        deg_inv_sqrt = deg.pow(-0.5)
        norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]

        # Step 4-5: Start propagating messages.
        adjmat = SparseTensor(row=edge_index[0], col=edge_index[1], value=torch.ones(edge_index.shape[1]))
        # 此处传的不再是edge_idex,而是SparseTensor类型的Adjancency Matrix
        return self.propagate(adjmat, x=x, norm=norm, deg=deg.view((-1, 1)))

    def message(self, x_j, norm, deg_i):
        # x_j has shape [E, out_channels]
        # deg_i has shape [E, 1]
        # Step 4: Normalize node features.
        return norm.view(-1, 1) * x_j * deg_i

    def aggregate(self, inputs, index, ptr, dim_size):
        print('self.aggr:', self.aggr)
        print("`aggregate` is called")
        return super().aggregate(inputs, index, ptr=ptr, dim_size=dim_size)

    def message_and_aggregate(self, adj_t, x, norm):
        print('`message_and_aggregate` is called')
        # 没有实现真实的消息传递与消息聚合的操作

    def update(self, inputs, deg):
        print(deg)
        return inputs


dataset = Planetoid(root='dataset', name='Cora')
data = dataset[0]

net = GCNConv(data.num_features, 64)
h_nodes = net(data.x, data.edge_index)
# print(h_nodes.shape)

update方法接收聚合的输出作为第一个参数,此外还可以接收传递给propagate方法的任何参数。在上方的代码中,我们覆写的update方法接收了聚合的输出作为第一个参数,此外接收了传递给propagatedeg参数。

作业

  1. 请总结MessagePassing基类的运行流程。
  2. 请复现一个一层的图神经网络的构造,总结通过继承MessagePassing基类来构造自己的图神经网络类的规范。

覆写 message 函数

def message(self, x_i, norm, d):
    # x_i has shape [E, out_channels]
    # Step 4: Normalize node features.
    return norm.view(-1, 1) * d * x_i

覆写 aggregate 函数

def aggregate(self, inputs, index, dim_size):
    return scatter_add(inputs, index, dim=self.node_dim, dim_size=dim_size)

接着覆写 update 函数

def update(self, inputs: Tensor) -> Tensor:
    Lin = torch.nn.Linear(inputs.size(1), inputs.size(1))
    return Lin(inputs)

参考资料

ng-networks)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值