- 博客(14)
- 收藏
- 关注
原创 第三章 待整理
本章目录1 视图1.1 创建视图1.2 修改视图结构1.3 更新视图内容1.4 删除视图2 子查询2.1 嵌套子查询2.2 标量子查询2.3 关联子查询3 函数3.1 算术函数1 视图视图与表的区别:“是否保存了实际的数据”“视图不是表,视图是虚表,视图依赖于表”。1.1 创建视图CREATE VIEW <视图名称>(<列名1>,<列名2>,...) AS <SELECT语句>-- 基于多表的创建视图,不用join-- create的列名
2021-09-19 23:54:00 117
原创 第二章 基础查询
本章目录1 基础查询2 聚合函数和groupby3 执行顺序4 having5 order by1 基础查询SQL中可以随意使用换行符(但不可插入空行)1行注释"-- “、多行注释”/* */"NULL的真值结果既不为真,也不为假,表不确定只能是 is null 不能是 = null;is not null 同理字符串类型的数据原则上按照字典顺序进行排序,不能与数字的大小顺序混淆星号、distinct、中文需要双引号比较运算符,等于号用=,不用==NOTAND、OR括号-- e
2021-09-16 21:49:51 107
原创 第一章 数据库、表的主要操作
本章目录1 RDBMS1.1 SQL语言分类1.2 SQL的基本书写规则2 DDL2.1 数据库、表、列的命名规则2.2 部分数据类型2.3 部分约束2.4 数据库:创建2.5 表:创建、删除、更新2.5.1 创建表、删除表:create、drop2.5.2 向表中插入数据:insert2.5.3 从其他表复制数据2.5.4 添加列、删除列:alter+add/drop2.5.3 列数据更新:update+set2.5.4 清空表内容:truncate3 练习参考:数据库:DB数据库管理系统:DBMS
2021-09-14 13:01:56 151
原创 第一章 attention和transformer
基于transformers的自然语言处理(NLP)入门1 Seq2Seq【论文】Sequence to Sequence Learningwith Neural Networks【2014】、Learning Phrase Representations using RNN Encoder–Decoderfor Statistical Machine Translation【2014】【参考】Seq2Seq模型概述seq2seq属于encoder-decoder结构的一种基本思想就是利用两
2021-08-18 19:27:00 181
原创 【GNN】阶段学习总结
十分感谢datawhale2021.6学习:图神经网络【GNN】第一章 图论基础讲解图论的相关定义概念【GNN】第二章 PyG中的图与图数据集PyG中的Data类讲解Dataset类初使用【GNN】第三章 消息传递范式与PyG的MessagePassing基类消息传递范式的理论-MessagePassing基类的运行流程继承MessagePassing基类构建GCN卷积层【GNN】第四章 节点表征学习与节点分类任务(理论+调包实操)图数据的简要分析MLP的节点分类操作
2021-07-10 22:31:21 280
原创 超大规模数据集类的创建
问题:数据集规模超级大,内存无法完全存下所有数据。解决:一个按需加载样本到内存的数据集类 torch_geometric.data.Dataset继承该基类时需要实现的基本方法继承torch_geometric.data.InMemoryDataset基类要实现的方法,继承此基类同样要实现:【GNN】第五章 构造数据完全存于内存的数据集类InMemoryDatasetlen():返回数据集中的样本的数量get():实现加载单个图的操作。注意:在内部,__getitem__()返回通过调用get(
2021-07-10 00:03:02 311
原创 【GNN】第八章 基于GIN的图表征学习
本文参考自datawhale2021.6学习:图神经网络【GNN】第一章 图论基础【GNN】第二章 PyG中的图与图数据集【GNN】第三章 消息传递范式与PyG的MessagePassing基类【GNN】第四章 节点表征学习与节点分类任务(理论+调包实操)【GNN】第五章 构造数据完全存于内存的数据集类InMemoryDataset【GNN】第六章 边预测任务本章目录前言1 WL-test1.1 同构图 Graph Isomorphism1.2 多重集 Multiset1.3 1-dimens
2021-07-05 23:35:53 6572 4
原创 超大图上的节点表征学习
本文参考自datawhale2021.6学习:图神经网络Cluster GCN简介利用图节点聚类算法将一个图的节点划分为c个簇,每一次选择几个簇的节点和这些节点对应的边构成一个子图,然后对子图做训练。由于是利用图节点聚类算法将节点划分为多个簇,所以簇内边的数量要比簇间边的数量多得多,所以可以提高表征利用率,并提高图神经网络的训练效率。每一次随机选择多个簇来组成一个batch,这样不会丢失簇间的边,同时也不会有batch内类别分布偏差过大的问题。基于小图进行训练,不会消耗很多内存空间,于是我们可
2021-07-01 19:30:37 130
原创 【GNN】第六章 边预测任务实操
本章目录1 边预测任务1.1 训练集、验证集、测试集的构建1.2 边预测神经网络(以GCN为例)1.2.1 网络构造1.2.2 .nn.Sequential的网络构造1.2.3 训练、验证与测试2 作业1 边预测任务目标是预测两个节点间是否存在边1.1 训练集、验证集、测试集的构建需求:正负样本平滑:data.edge_index存储了正样本,但为了构建预测任务还需要负样本(不存在边的节点对),同时正负样本数量要平衡分训练、验证、测试集解决:torch_geometric.utils.tr
2021-06-27 21:53:04 5331 4
原创 【GNN】第五章 构造数据完全存于内存的数据集类InMemoryDataset
本章目录1 InMemoryDataset基类1.1 该基类的作用1.2 传入的参数1.3 继承时需要实现的四个基本方法1.4 继承后生成对象的运行流程1.5 一个生成对象的例子1 InMemoryDataset基类InMemoryDataset它是继承Dataset基类的,Dataset基类将见后面第十章1.1 该基类的作用对于占用内存有限的数据集,我们可以将整个数据集的数据都存储到内存里PyG可以方便地构造数据完全存于内存的数据集类:InMemory数据集类1.2 传入的参数clas
2021-06-27 19:06:44 1631
原创 【GNN】第四章 节点表征学习与节点分类任务(理论+调包实操)
本章目录1 图数据获取并分析1.1 数据获取与规范化1.2 数据集与数据的分析1.3 节点表征分布的可视化:TSNE2 MLP神经网络进行节点分类2.1 复习:pytorch神经网络的构建与调用2.2 节点分类的MLP神经网络2.2.1 构建2.2.2 训练2.2.3 测试3 卷积图神经网络GCN3.1 PyG中的GCNConv模块3.2 通过接口构造GCN神经网络3.2.1 构造3.2.2 训练3.2.3 测试3.2.4 tsne可视化训练结果1 图数据获取并分析1.1 数据获取与规范化节点特征归
2021-06-23 17:00:14 2604 1
原创 【GNN】第三章 消息传递范式与PyG的MessagePassing基类
1 消息传递范式消息传递范式是一种聚合邻接节点信息来更新中心节点信息的范式,它将卷积算子推广到了不规则数据领域,实现了图与神经网络的连接消息传递神经网络(MPNN)是一种框架,其前向传递有两个阶段:消息传递阶段(Message Passing)、读出阶段(Readout),这里先介绍消息传递阶段1.1 消息传递的三个函数三个函数分为:各边要传递的消息的创建 ϕ\phiϕ、消息聚合 □\square□ 、节点表征的更新 γ\gammaγ 三个步骤对三个函数的要求:要求上述三个函数均可微
2021-06-19 17:15:10 1358
原创 【GNN】第二章 PyG中的图与图数据集
本文参考自datawhale2021.6学习:图神经网络PyG的安装:Installation of of PyTorch Geometric 【GNN】第一章 图论基础本章目录1 Data类:PyG中的图1.1 属性和方法1.2 类方法1.3 作业:继承Data类实现一个类2 Dataset类:Pyg中的图数据集1 Data类:PyG中的图Data类官方文档1.1 属性和方法定义class Data(object): def __init__(self, x=None, ed
2021-06-15 17:06:28 1395
原创 【GNN】第一章 图论基础
1 关于图的各种定义1.1 图的顶点和边 G={v,ϵ}G =\{v,\epsilon\}G={v,ϵ}v={v1,v2,…,vN}v=\{v_1,v_2,\dots,v_N\}v={v1,v2,…,vN} 是顶点的集合,数量为Nϵ={e1,e2,…,eM}\epsilon=\{e_1,e_2,\dots,e_M\}ϵ={e1,e2,…,eM} 是边的集合,数量为M图用顶点代表实体(entities),边代表实体间的关系(relations)一般顶点含有信息,边可能含有信息顶点和边
2021-06-15 15:32:26 854
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人