图着色问题 (25 分)

图着色问题是一个著名的NP完全问题。给定无向图G=(V,E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?

但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。

输入格式:

输入在第一行给出3个整数V(0<V≤500)、E(≥0)和K(0<K≤V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(≤20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。

输出格式:

对每种颜色分配方案,如果是图着色问题的一个解则输出Yes,否则输出No,每句占一行。

输入样例:

6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4

输出样例:

Yes
Yes
No
No

 思路:

  1. 判断填的色是否等于颜色数
  2. 判断相邻的点颜色是否相同 
  3. 只要有一个不符合都输出No

#include<iostream>
#include<cstring>
using namespace std;

struct node{
    int x,y;
}a[250010];

int yan[510],book[510];

int main(){
    int n,m,k;
    cin >> n >> m >> k;
    for(int i = 0 ; i < m ; i ++){
        cin >> a[i].x >> a[i].y;
    }
    int q;
    cin >> q;
    while(q --){
        memset(book,0,sizeof book);
        for(int i = 1 ; i <= n ; i ++){
            cin >> yan[i]; 
            book[yan[i]] ++;
        }
        int num = 0;
        for(int i = 0 ; i <= n ; i ++){
            if(book[i]) num++;
        }
        if(num == k){
            int flag = 0;
            for(int i = 0 ; i < m ; i ++){
                if(yan[a[i].x] == yan[a[i].y]){
                    flag = 1;
                    break;
                }
            }
            if(!flag) cout << "Yes" << endl;
            else cout << "No" << endl;
        }
        else cout << "No" << endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值