图着色问题是一个著名的NP完全问题。给定无向图G=(V,E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?
但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。
输入格式:
输入在第一行给出3个整数V(0<V≤500)、E(≥0)和K(0<K≤V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(≤20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。
输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出Yes
,否则输出No
,每句占一行。
输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4
输出样例:
Yes
Yes
No
No
思路:
- 判断填的色是否等于颜色数
- 判断相邻的点颜色是否相同
- 只要有一个不符合都输出No
#include<iostream>
#include<cstring>
using namespace std;
struct node{
int x,y;
}a[250010];
int yan[510],book[510];
int main(){
int n,m,k;
cin >> n >> m >> k;
for(int i = 0 ; i < m ; i ++){
cin >> a[i].x >> a[i].y;
}
int q;
cin >> q;
while(q --){
memset(book,0,sizeof book);
for(int i = 1 ; i <= n ; i ++){
cin >> yan[i];
book[yan[i]] ++;
}
int num = 0;
for(int i = 0 ; i <= n ; i ++){
if(book[i]) num++;
}
if(num == k){
int flag = 0;
for(int i = 0 ; i < m ; i ++){
if(yan[a[i].x] == yan[a[i].y]){
flag = 1;
break;
}
}
if(!flag) cout << "Yes" << endl;
else cout << "No" << endl;
}
else cout << "No" << endl;
}
}