第一次接触斐波那契数列,他居然被叫做“超生的兔子”。
Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。
当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。
这里由于在Oj平台的编译,不适合用大规模递归,所以设计一个O(n)复杂度的算法
这里我先粘一下代码:
#include<iostream>
using namespace std;
int main()
{
unsigned int a1 = 1;
unsigned int a2 = 1;
unsigned int a3=0; //表示第三位
int t=0; //表示余数
int n;
cin >> n;
if (n > 2)
{
for (int i = 0; i < n-2; i++)
{
a3 = (a1 + a2)%10007;
a1 = a2;
a2 = a3;
}
/*t = a3 % 10007;*/
cout << a3;
}
if (n <= 2)
{
int p = 1 % 10007;
cout << p;
}
}
由于当输入1或者2的时候用上面的循环没有输出就直接用一个特殊情况来代表。
因为要的只有余数,所以a3要在a1+a2之后除以10007,然后a1得到a2的值,a2得到a3的值