蓝桥杯:基础题,斐波那契数列

 第一次接触斐波那契数列,他居然被叫做“超生的兔子”。

Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。

当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。

这里由于在Oj平台的编译,不适合用大规模递归,所以设计一个O(n)复杂度的算法

这里我先粘一下代码: 

#include<iostream>
using namespace std;
int main()
{
	unsigned int a1 = 1;
	unsigned int a2 = 1;
	unsigned int a3=0;					//表示第三位
	int t=0;					//表示余数
	int n;
	cin >> n;
	if (n > 2)
	{
		for (int i = 0; i < n-2; i++) 
		{
			a3 = (a1 + a2)%10007; 
			a1 = a2;
			a2 = a3;
		}
		/*t = a3 % 10007;*/
		cout << a3;
	}
	if (n <= 2)
	{
		int p = 1 % 10007;
		cout << p;
	}
}

 由于当输入1或者2的时候用上面的循环没有输出就直接用一个特殊情况来代表。

因为要的只有余数,所以a3要在a1+a2之后除以10007,然后a1得到a2的值,a2得到a3的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值