已解答
中等
相关标签
相关企业
提示
给你一个整数数组 nums
和一个整数 k
,请你返回子数组内所有元素的乘积严格小于 k
的连续子数组的数目。
示例 1:
输入:nums = [10,5,2,6], k = 100 输出:8 解释:8 个乘积小于 100 的子数组分别为:[10]、[5]、[2]、[6]、[10,5]、[5,2]、[2,6]、[5,2,6]。 需要注意的是 [10,5,2] 并不是乘积小于 100 的子数组。
示例 2:
输入:nums = [1,2,3], k = 0 输出:0
提示:
1 <= nums.length <= 3 * 104
1 <= nums[i] <= 1000
0 <= k <= 106
思路:
-
遍历列表:
- 使用
for
循环遍历列表nums
,r
依次指向列表中的每个元素。 - 在每次循环中,将当前
r
指向的元素乘以s
,更新乘积。
- 使用
-
调整窗口:
- 当
s
大于等于k
时,说明当前窗口的乘积不满足条件,需要缩小窗口。 - 通过将
s
除以l
指向的元素,并将l
向右移动一位,来缩小窗口。 - 这个过程一直持续到
s
小于k
或者l
与r
相等。
- 当
-
计算结果:
- 如果
s
小于k
,说明当前窗口的乘积满足条件。 - 此时,以
r
为右边界的满足条件的子数组个数为r - l + 1
,将其加入ans
。
- 如果
当 s
(窗口内元素乘积)小于 k
时,以 r
为右边界的满足条件的子数组个数为 r - l + 1
,原因如下:
假设当前窗口的左右边界为 l
和 r
。
-
子数组的个数计算方式:
- 从左边界
l
开始到右边界r
的连续子数组,其个数可以通过数学方式来计算。 - 以
l
为起点,长度为 1 的子数组有 1 个,即nums[l:r+1]
(这里切片是从l
到r
,包含r
)。 - 以
l + 1
为起点,长度为 2 的子数组有 1 个,即nums[l + 1:r + 1]
。 - 以此类推,直到以
r
为起点,长度为r - l + 1
的子数组有 1 个,即nums[r:r + 1]
。
- 从左边界
-
推导过程:
- 对于一个长度为
n
的连续区间,它的子数组个数为1 + 2 + 3 +... + n
。 - 根据等差数列求和公式,这个和为
n*(n + 1)/2
。 - 在这里,区间长度为
r - l + 1
,所以子数组个数就是(r - l + 1)*((r - l + 1) + 1)/2
。 - 化简后得到
(r - l + 1)*(r - l + 2)/2
。 - 但实际上,不需要进行这么复杂的计算,因为这里只需要知道子数组的总数,而总数就是从
l
到r
的连续元素个数,即r - l + 1
。
- 对于一个长度为
例如,当 l = 1
,r = 3
时,子数组有 nums[1:4]
(长度为 3)、nums[2:4]
(长度为 2)、nums[3:4]
(长度为 1),一共 3 - 1 + 1 = 3
个。
class Solution(object):
def numSubarrayProductLessThanK(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
l=0
s=1
ans=0
for r in range(len(nums)):
s*=nums[r]
while s>=k and l<r:
s/=nums[l]
l+=1
if s<k:
ans+=r-l+1
return ans