【老生谈算法】matlabAP近邻传播聚类算法源码——聚类算法

AP(Affinity Propagation)是一种无需指定类别数量的聚类算法,它通过传播相似度信息找到聚类中心。文章介绍了AP算法的原理、Matlab实现、以及与k-Means的区别,强调AP的优点包括无需预设类别数、对初值不敏感,并提供了Matlab代码示例。
摘要由CSDN通过智能技术生成

AP近邻传播聚类算法原理及Matlab实现


1、文档下载:

本算法已经整理成文档如下,有需要的朋友可以点击进行下载

序号 文档(点击下载)
本项目文档 【老生谈算法】AP近邻传播聚类算法原理及Matlab实现.docx

2、算法详解:

Affinity Propagation (AP)聚类是2007年在Science杂志上提出的一种新的聚类算法。它根据N个数据点之间的相似度进行聚类,这些相似度可以是对称的,即两个数据点互相之间的相似度一样(如欧氏距离);也可以是不对称的,即两个数据点互相之间的相似度不等。这些相似度组成N×N的相似度矩阵S(其中N为有N个数据点)。

AP算法不需要事先指定聚类数目,相反它将所有的数据点都作为潜在的聚类中心,称之为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿里matlab建模师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值