信息融合的通用处理结构有哪些?有什么特点?
答:集中式结构,分布式结构,混合式结构。
集中式结构:集中式结构加工的是传感器的原始数据,各个传感器录取的检测报告直接被送到融合中心,在那里进行数据配准,点迹相关,数据互航,航迹滤波,预测与综合跟踪。这种结构的特点是信息损失小,对系统通信要求高,融合中心计算负担重,系统的生存能力较差。
分布式结构:加工的是预处理过的局部数据,每个传感器的检测报告在进入融合中心以前,先由他自己的数据处理器产生局部多目标跟踪轨迹,然后把处理后的信息送至融合中心。中心根据各节点的航迹数据完成关联和融合,形成全局估计。相对于集中式结构,该类系统具有造价高,可靠性高,通信量小的特点。
混合式结构:既有加工原始数据,又有预处理过的数据。同时传输检测报告和经过局部节点处理的信息。保留了集中式和分布式的优点,但在通信和计算上要付出昂贵的代价,在实际场合往往采用此类结构。
简述信息融合的通用处理结构的特点,查阅关于数据级,特征级和决策级三级融合模型解释,三级融合模型的含义。
信息融合的通用处理结构的特点:
集中式结构:集中式结构加工的是传感器的原始数据,各个传感器录取的检测报告直接被送到融合中心,在那里进行数据配准,点迹相关,数据互航,航迹滤波,预测与综合跟踪。这种结构的特点是信息损失小,对系统通信要求高,融合中心计算负担重,系统的生存能力较差。
分布式结构:加工的是预处理过的局部数据,每个传感器的检测报告在进入融合中心以前,先由他自己的数据处理器产生局部多目标跟踪轨迹,然后把处理后的信息送至融合中心。中心根据各节点的航迹数据完成关联和融合,形成全局估计。相对于集中式结构,该类系统具有造价高,可靠性高,通信量小的特点。
混合式结构:既有加工原始数据,又有预处理过的数据。同时传输检测报告和经过局部节点处理的信息。保留了集中式和分布式的优点,但在通信和计算上要付出昂贵的代价,在实际场合往往采用此类结构。
三级融合模型
数据级融合:
是最低层次的融合,直接对传感器的观测数据进行融合处理,然后基于融合后的结果进行特征提取和决策判断。
优点:数据损失量少,提供其他融合层次不能提供的细微信息,精度最高。
缺点:信息处理时间长,抗干扰能力较差等等......
特征级融合:
属于中间层次的融合。先由每个传感器抽象出自己的特征向量,融合中心完成的是特征向量的融合处理。
优点:实现了信息的压缩,降低了对通信带宽的要求.
缺点:但由于损失一部分有用信息,使得融合性可能下降。
分类:特征级融合分为目标状态信息融合和目标特征信息融合。
决策级融合:
是一种高层次的融合。先由每个传感器基于自己的数据做出决策,然后在融合中心完成的是局部决策的融合处理。
优点:抗干扰能力强,对传感器依赖小,融合中心处理代价低。
缺点:数据损失量最大,精度最低。
特征级和决策级不要求传感器是同类的。
简述惯导平台包含的传感器有哪些?主要作用?主要原理?
惯导平台系统中的陀螺仪用来形成一个导航坐标系,使加速度计的测量轴稳定在该坐标系中,并给出航向和姿态角。
加速度计用来测量运动体的加速度,经过对时间的一次积分得到速度,速度再经过对时间的一次积分即可得到距离。