为什么需要信息融合
信息融合的三个过程
1.通过Sensor获取原始信息
2.Information reduction
3.结合一些基本知识进行信息融合
Information reduction的方法
1.Fensterung:观察一个时间段或一个地点的片段
2.映射(Projektion): 如把时域的信号转化到频域上(应确保可逆性)
3.采样(Abtasung):
//还没懂这个,包括Ortsdiskretisierung,Zeitdiskretisierung和Quantisierung
4.施加干扰(zufuegung von Stoerungen): //有啥用也还没明白
Informationsfusion的作用
通过冗余测量以及Information reduction的多样化可以提高信息的可靠性,精确度及全面性。
另外使用信息融合往往比直接使用高精度Sensor要更加实惠。(相对的也需要更多的信息加工)
信息融合的一些基本概念
Information:
任何可以减少当前问题未知属性的事物(即一切有利于解决问题的事物)。
一个有意义的Information (Sinnvolle Information)由事件(Fakten)和他的不确定性(zugehoerigen Unsicherheiten)组成
Information可以通过载体(Traeger)呈现。
Signal:
Information的载体。分为Analog和Digital两种情况
Data(Daten):
可阅读,可加工的一种信息表达方式。Signal可以转换成Daten,但Daten并不一定都是有Signal转化而来的
特征(Merkmale):指对象的可观察,可测量的于分类有益的属性
符号信息(Symbolische Information):通过前面获得的Merkmale进行分类后得到的结果。
约束,条件,规则(Constrains,Bedingungen,Regeln):
信息融合的条件
信息融合的条件是所有的信息都围绕着共同的主题(gemeinsamen Sachverhalt)。
像这文章,写的那么乱,但是他们的主题是一样的。通过对这文章的阅读,可以对信息融合有个大概的了解。
额外条件:互相有矛盾的,用于信息融合的信息必须是不确定的。(muss unsicherheitsbehaftet sein)
比如两个人分别非常确定的说,现在室外温度是15度和20度。那么这两个信息是不可能融合的。只有当两人都不能确定,而是分别说,现在室外温度很可能是15度和20度。那么通过这两条信息,我们可以得出更有把握的猜测:现在室外温度在15到20度之间。
后续内容一览
1.概率方法(Probalilistische Methoden)
概率论基础
经典统计学
GUM:Guide to the Expression of Uncertainty in Measurement
Bayes’ Fusion
Bayes’ Net
Kalman过滤器
tracking
2.Dempster-Shafer理论
3.Fuzzy系统
4.神经元网络(Neuronale Netze)
5.Registration
6.Energierfunktionale//这不懂,等学了再说吧