自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 相关性热图的完美解决方案 -- pheatmap包

相关性热图的完美解决方案 – pheatmap包install.packages('pheatmap')# 安装包,加载数据library(pheatmap)# 生成测试数据集test = matrix(rnorm(200),20,10)# 取出1-10行,13579列,全部加3test[1: 10, seq(1,10,2)] = test[1:10, seq(1, 10,2)]+3# 取出11-20行,246810列,全部加1test[11: 20, seq(2,10,2)] = tes

2021-09-04 17:59:03 4516

原创 第10章 功效分析

使用R语言对数据功效分析 – pwr包文章目录使用R语言对数据功效分析 -- pwr包10.2.1 t检验10.2.2 方差分析10.2.3 相关性10.2.4 线性模型 - pwr.f2.test()10.2.5 比例检验10.2.6 chisq检验10.3 绘制功效分析图首先我们要知道什么是一型错误和二型错误拒绝H0不拒绝H0H0为真一型错误正确H0为假证确二型错误用pwr包做功效分析时候,对于每个函数,可以设置4个变量(样本大小, 显著水平, 功效和效应

2021-08-29 22:56:36 666

原创 使用R语言进行单(双)因素方差分析

使用R语言进行单(双)因素方差分析9.1 先了解一些术语方差分析: ANOVA, 协方差分析:ANCOVA (analysis of covariance ), 多元方差分析: muti-variate ANOVA, 多元协方差分析:MANCOVA9.2 ANOVA 模型拟合R语言中使用 aov() 函数 拟合 ANOVA模型, 结果和回归模型中 lm() 函数一样aov()函数R 表达式中常见的特殊符号:R 常见研究设计的表达式:单因素ANOVA: y ~ A协变量的单因素ANOV

2021-08-22 10:47:52 5822 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除