相关性热图的完美解决方案 -- pheatmap包

本文介绍如何利用R语言的pheatmap包创建高质量的相关性热图,展示数据之间的关联性。
摘要由CSDN通过智能技术生成
相关性热图的完美解决方案 – pheatmap包
install.packages('pheatmap')# 安装包,加载数据
library(pheatmap)
# 生成测试数据集
test = matrix(rnorm(200),20,10)
# 取出1-10行,13579列,全部加3
test[1: 10, seq(1,10,2)] = test[1:10, seq(1, 10,2)]+3
# 取出11-20行,246810列,全部加1
test[11: 20, seq(2,10,2)] = test[11:20, seq(2, 10,2)]+1
# 取出15-20行,246810列,全部加5
test[15:20, seq(2,10,2)] = test[15:20, seq(2,10,2)]+5
> head(test)
         [,1]       [,2]     [,3]       [,4]     [,5]        [,6]
[1,] 5.862158  1.0025110 4.643383  1.3927443 3.078703 -0.70255575
[2,] 2.170332  0.9238553 3.270871 -1.5441517 2.466412  2.79953282
[3,] 3.214988  0.8554705 3.535641 -0.1205533 3.057674  0.53514690
[4,] 2.112973 -0.3915936 3.574049  0.1224274 2.816445  0.02743305
[5,] 3.875925  0.1835678 4.237681 -1.1217373 4.015698 -1.19018925
[6,] 4.492317 -1.362436
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值