数据结构-算法

2-1        若要对n个数进行排序,则这个问题的规模指的是( )。

A.排序时间的大小        B.不同排序方法有不同的规模        C.n的大小        D.A和C

 2-2        算法分析的目的是( )

A.找出数据结构的合理性        B.研究算法中的输入和输出的关系        

C.分析算法的效率以求改进        D.分析算法的易读性和文档性

2-3        算法指的是( )。

A.计算机程序     B.解决问题的计算方法     C.搜索和排序方法       D.解决问题的有限运算序列

2-4        对算法分析的前提是( )。

A.算法必须简单        B.算法必须正确        C.算法结构性强        D.算法必须通用

2-5        算法的时间复杂度取决于( )

A.问题的规模        B.待处理数据的初态        C.A和B 

2-6        算法分析的两个主要方面是( )

A.空间复杂度和时间复杂度          B.正确性和简明性         

C.可读性和文档性                        D.数据复杂性和程序复杂性

 2-7        当输入规模为n时,下列算法渐进复杂性中最低的是

A.5n                B.n^{2}                C.2n^{2}               D.n!

 2-8        下面程序的时间复杂度为()。

for(i = 0; i < m; i++)
     for(j = 0; j < n; j++ )
          A[i][j] = i*j;

A.O(m ^{2})                B.O(n^{2})                C.O(m × n)                D.O(m + n)

2-9        下面程序的时间复杂度为()。

for(i = 0; i < m; i++)
      for(j = 0; j < t; j++)
           c[i][j] = 0;
for(i = 0; i < m; i++)
      for(j = 0; j < t; j++)
            for(k = 0; k < n; k++)
                 c[i][j] = c[i][j]+a[i][k] * b[k][j];

A.O(m × n × t)                B.O(m + n + t)                C.O(m + n × t)                D.O(m × t + n)

 2-10        执行下面程序段时,执行S语句的频度为()。

for(int i=0;i<n;i++)
for(int j=1;j<=i;j++)
     S;

A.n^{2}                B.n^{2}/2                C.n(n+1)                D.n(n+1)/2

2-11        以下程序段的时间复杂度是

for (int i = 0; i * i < n; i++) {
    printf("%d\n", i);
}

A.O(n)                        B.O(​\sqrt[]{n}               C.O(n^{2})                D.O(nlgn) 

 2-12        斐波那契数列FN​的定义为:F0​=0, F1​=1, FN​=FN−1​+FN−2​, N=2, 3, …。用递归函数计算FN​的空间复杂度是:

A.O(logN)                       B.O(N)                C.O(FN​)                D.O(N!)

 2-13        下面代码段的时间复杂度是()。

i=1;
while( i<=n )
    i=i*3;

A.O(n)                        B.O(n2)                C.O(1)                D.O(\log_{3}n)

2-14        下面代码段的时间复杂度是()。

x=0;
for( i=1; i<n; i++ )
    for ( j=1; j<=n-i; j++ )
        x++;

A.O(n)                        B.O(n^{2})                C.O(n^{3})                D.O(2^{n})

2-15        下面代码段的时间复杂度是()。

x=n; //n>1
y=0;
while( x≥(y+1)*(y+1) )
    y++;

A.O(1)                        B.O(n_{}^{1/2})                C.O(n)                D.O(log2​n) 

2-16        以下程序段的空间复杂度为( )。

int a[100];
for(int i=0; i<100; i++) 
    a[i] = 0;

A.O(n)                        B.O(100)                        C.O(1)                D.O(404)

2-17        下面叙述正确的是?

A.算法的执行效率与数据的存储结构无关

B.算法的空间复杂度是指算法程序中指令(或语句)的条数

C.算法的有穷性是指算法必须能在执行有限个步骤之后终止

D.其他三种描述都不对

2-18        计算算法的时间复杂度属于( )。

A.事前统计的方法    B.事前分析估算的方法       C.事后统计的方法      D.事后分析估算的方法

2-19        下列代码的时间复杂度是:

if ( A > B ) {
    for ( i=0; i<N; i++ )
        for ( j=N*N; j>i; j-- )
            A += B;
}
else {
    for ( i=0; i<N*2; i++ )
        for ( j=N*2; j>i; j-- )
            A += B;
}

A.O(N)                        B.O(N ^{2})                C.O(N ^{3})                D.O(N^{4}

2-20        下列代码的时间复杂度是:

if ( A > B ) {
    for ( i=0; i<N*N/100; i++ )
        for ( j=N*N; j>i; j-- )
            A += B;
}
else {
    for ( i=0; i<N*2; i++ )
        for ( j=N*3; j>i; j-- )
            A += B;
}

A.O(N^{3})                        B.O(N^{4 })                C.O(N^{5 })                D.O(N^{6}

 2-21        要判断一个整数N(>10)是否素数,我们需要检查3到\sqrt{N}​之间是否存在奇数可以整除N。则这个算法的时间复杂度是:

A.O(\sqrt{N}​)                        B.O(\frac{N}{2})                C.O(\sqrt{N}​logN)                D.O(0.5logN)

2-22        时间复杂度分析,下面算法的时间复杂度为 ▁▁▁▁▁。

int foo(int n)
{
    return n * (n + 1) / 2;
}

A.O(n)                        B.O(n^{2})                        C.O(\sqrt{N})                        D.O(1)

2-23        时间复杂度分析,下面算法的时间复杂度为 ▁▁▁▁▁。

int foo(int n)
{
    int i, s = 0;
    for (i = 1; i <= n; i *= 2)
    {
        s += i;
    }
    return s;
}

A.O(\sqrt{N})                        B.O(n)                        C.O(2^{n})                D.O(\log_{2}n)

2-24        时间复杂度分析,下面算法的时间复杂度为 ▁▁▁▁▁。

int foo(int n)
{
    int i, s = 0;
    for (i = 1; i * i <= n; ++i)
    {
        s += i;
    }
    return s;
}

A.O(\sqrt{N})                        B.O(n)                        C.O(n^{2})                D.O(\log_{2}n)

2-25        T(n)表示当输入规模为n时的算法效率,以下算法中效率最优的是( )。

A.T(n)=T(n-1)+1,T(1)=1                                B.T(n)=2n^{2}                

C.T(n)=T(n/2)+1,T(1)=1                                D.T(n)=3n\log_{2}n

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LSuccess

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值