对比传统方法,基于Mamba的遥感图像处理在计算效率和分析精度方面遥遥领先,Mamba+遥感也成为了论文研究的新方向。
具体来说,在融合高分辨率的空间图像和低分辨率的光谱图像获取综合信息方面,Mamba可以提升性能,同时保持数据处理的效率。在降维、去噪、特征提取和大规模数据集处理等方面,Mamba通过优化计算资源使用,提高遥感数据分析的准确性和速度。
本文分享2024最新Mamba+遥感创新方案,代码已开源,论文可参考创新点做了简单分析,具体工作细节可阅读原文。
Samba: Semantic Segmentation of Remotely Sensed Images with State Space Model
方法:论文介绍了Samba,这是一种新颖的语义分割框架,构建在Mamba之上,专门用于高分辨率遥感图像的分割,标志着Mamba首次在该领域中的应用。
创新点:
提出了Samba架构,首次将Mamba架构引入到遥感图像分割中。Samba架构利用了Mamba的编码器-解码器结构,通过Samba块作为编码器来高效提取多层次的语义信息,并通过UperNet作为解码器进行逐步上采样以产生分割结果。
Samba在常用的遥感数据集上实现了卓越的性能,成为Mamba架构在这一特定应用中性能的新基准。
由于Mamba架构在处理长序列方面表现优异,因此在多通道数据(如高光谱数据)的语义分割中应用Mamba架构是有价值的探索方向之一。