
YOLOv11改进专栏

文章平均质量分 97
本专栏会持续复现顶会,以及一些最新的模块调用,用于改进YOLOv11的测试精度,力求详细明了,以论文的角度,手把手的教程专为学习,改进YOLO模型算法的同学设计,欢迎大家订阅。
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Limiiiing
YOLO系列,RT-DETR模型、多模态融合改进。专栏内所有文章均配置完整代码和详细步骤,亲测可行,快速涨点。订阅专栏享受改进,写作,选刊等答疑内容,助力科研,发文无忧。
展开
-
YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
如今各种网络模型更新迭代越来越快,计算机视觉相关的文章也越来越多,多到一些普通,通用的改进点无法达到发表的要求。本专栏正是解决这个问题!如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。原创 2024-10-11 15:10:44 · 17110 阅读 · 86 评论 -
YOLOv11改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例
本文记录的是基于SimAM注意力模块的YOLOv11目标检测方法研究。SimAM注意力模块通过优化能量函数来获得每个神经元的三维权重,而或增加计算复杂度。若是有轻量化需求的小伙伴,无参的注意力模块也许是一个不错的选择。原创 2024-10-11 11:04:23 · 2459 阅读 · 1 评论 -
YOLOv11在新版本的ultralytics项目包如何配置添加新的模块(base_modules、repeat_modules)
本文主要讲解如何在8.3.65版本以后的ultralytics项目包中配置添加新的模块。原创 2025-04-16 16:12:39 · 41 阅读 · 0 评论 -
YOLOv11改进策略【Neck】| SEAM:分离和增强注意模块,解决复杂场景下的小目标遮挡问题
本文记录的是利用 SEAM 模块优化 YOLOv11 的目标检测网络模型。的设计出发点在于解决复杂场景下的人脸遮挡问题,相当于是小目标被其他物体部分遮挡时,传统方法因特征缺失导致检测精度下降的问题。该模块通过增强未遮挡区域的特征响应并补偿被遮挡区域的信息损失,提升模型对遮挡小目标的检测能力。YOLO-FaceV2: A Scale and Occlusion Aware Face DetectorSEAM模块(Separated and Enhancement Attention Module)的设计出发点原创 2025-04-09 11:07:20 · 128 阅读 · 0 评论 -
YOLOv11改进策略【卷积层】| RFEM:感受野增强模块, 解决多尺度目标检测中因感受野不足导致的小目标信息丢失问题
RFE模块(Receptive Field Enhancement Module)的设计出发点是解决多尺度人脸检测中因感受野不足导致的小目标信息丢失问题。传统特征金字塔网络(如FPN)在处理小尺度人脸时,多次卷积操作会导致浅层特征的空间信息逐渐丢失,而深层特征虽语义丰富但空间分辨率较低。RFE模块通过引入扩张卷积,在不增加计算量的前提下扩大有效感受野,增强模型对不同尺度人脸的特征表达能力。原创 2025-04-08 19:05:03 · 253 阅读 · 0 评论 -
深入解析 YOLO11 项目包中的文件结构和各文件作用
在这篇博客中,我将深入分析YOLOv11项目包中各个文件的作用,对整个项目的文件结构有更清晰的认识。原创 2025-04-08 16:43:37 · 146 阅读 · 0 评论 -
YOLOv11改进策略【Conv和Transformer】| 引入CVPR-2024 RepViT 轻量级的Vision Transformers模块 RepViTBlock
本文记录的是。RepVit的网络结构借鉴ViT的设计理念,通过分离的token mixe和减少推理时的计算和内存成本,同时减少扩展比率并增加宽度,降低延迟,并通过来弥补参数大幅减少的问题,在轻量化的同时提高准确性。原创 2025-03-24 12:40:21 · 263 阅读 · 0 评论 -
YOLOv11知识蒸馏,实现无损涨点,包含逻辑蒸馏和特征蒸馏中的不同蒸馏方法,适用专栏内的所有模型
知识蒸馏(Knowledge Distillation)是由 Hinton 等人在 2015 年提出来的,主要是用一个复杂的教师模型去指导一个简单的学生模型训练,这样能让学生模型在保持高精度的同时,还能减少计算量。本文便是讲解如何针对的原始模型以及改进后的模型进行知识蒸馏,轻松实现无损涨点。知识蒸馏的核心在于利用已训练好的复杂模型(教师模型)去指导一个更简单的模型(学生模型)进行训练,以此让学生模型在保留较高精度的同时,降低计算成本。特征蒸馏(Feature Distillation)是知识蒸馏的一种形式,原创 2025-03-20 16:11:48 · 1347 阅读 · 5 评论 -
YOLOv11改进策略【独家融合改进】| StarNet + 小目标检测头,加强跨尺度的上下文特征融合,提高小目标检测能力
P3/8 - small检测头原始模型中的P3/8特征层对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在8x8到32x32像素左右的目标。P4/16 - medium检测头这个检测头对应的P4/16特征层经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。它主要用于检测中等大小的目标,尺寸范围大概在32x32到64x64像素左右。P5/32 - large检测头P5/32。原创 2025-03-20 14:16:59 · 310 阅读 · 0 评论 -
YOLOv11改进策略【SPPF】| 将特征金字塔池化修改为:SPPCSPC,提升模型的特征提取能力和计算效率。
本文记录的是。YOLOv7中的SPPCSPC(Spatial Pyramid Pooling Cross Stage Partial Connections)模块是一种结合了(SPP)和(CSP)的改进结构,本文将其添加到YOLOv11中,原创 2025-03-03 09:56:22 · 421 阅读 · 1 评论 -
YOLOv11改进策略【SPPF】| 将特征金字塔池化修改为:SPPELAN ,多尺度特征提取与高效特征融合
本文记录的是。通过与,提升模型检测精度和鲁棒性。原创 2025-02-28 15:54:23 · 454 阅读 · 0 评论 -
YOLOv11改进策略【独家融合改进】| U-Net V2 + CCFF,加强跨尺度的上下文特征融合,提高模型特征提取能力
本文记录的是基于U-Net V2和CCFF结构的YOLOv11目标检测改进方法研究。强大的特征提取能力与结构出色的跨尺度上下文特征融合优势相结合,既保留了细节特征的准确性,又增强了语义特征的指导作用,使得最终的特征表示更加完善和准确,有助于提高模型对各种图像细节和语义信息的理解和处理能力,从而在各类任务中取得更好的效果。U-NET V2: RETHINKING THE SKIP CONNECTIONS OF U-NET FOR MEDICAL IMAGE SEGMENTATION以下是对网络的详细介绍:由、原创 2025-02-25 09:05:07 · 374 阅读 · 0 评论 -
YOLOv11改进策略【独家融合改进】| 模型轻量化二次改进:StarNet + FreqFusion,极限降参,适用专栏内所有轻量化模型
FreqFusion是一种旨在解决密集图像预测任务中特征融合问题。原创 2025-02-24 15:14:06 · 1086 阅读 · 2 评论 -
YOLOv11计算COCO指标和TIDE指标,小目标检测必备,更全面的评估和指导模型性能,包含完整步骤和代码
COCO指标能够直观了解模型在目标时的效果;TIDE指标专注于对进行分类和分析,从揭示模型的性能问题,使模型评估更加全面和深入(本文提供了完整的实现代码和配置步骤)。例如,论文中COCO的指标内容展示:论文中TIDE。原创 2025-02-22 14:54:28 · 1071 阅读 · 2 评论 -
YOLOv11改进策略【Head】| (独家改进)检测头添加Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
本文记录的是利用优化的检测头。通过自注意力机制能够获取全局信息,但资源占用较大。卷积操作资源占用较少,但只能根据卷积核的大小获取局部信息。通过卷积调制操作简化了自注意力机制,更有效地利用了大核卷积,在视觉识别任务中表现出较好的性能。Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition是一种用于视觉识别的新型卷积网络架构,其设计的原理和优势如下:采用金字塔结构,与和网络类似,共四个阶段,每阶段特征图分辨率不同,连续阶段间使原创 2025-01-27 11:45:03 · 1024 阅读 · 0 评论 -
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
本文记录的是基于移动倒置瓶颈 MBConv 的 YOLOv11 的检测头轻量化改进方法研究。采用了独特的倒置瓶颈结构,通过的操作以及,在高效提取特征的同时极大地降低了计算量。本文将的设计优势融入j检测头中,使其在目标检测任务中不仅能够更精准地识别各类目标,还能在计算资源有限的情况下快速响应,展现出更为卓越的实时检测能力。EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks的实现代码如下:四、创新模块4.1 改进原创 2025-01-25 08:48:02 · 624 阅读 · 2 评论 -
YOLOv11改进策略【Head】| (独家改进)结合 ICME-2024 中的PPA注意力模块,自研带有注意力机制的小目标检测头
本文记录的是利用PPA (并行补丁感知注意模块)改进YOLOv11的检测头。通过改进传统卷积,形成带有注意力机制的小目标检测头,使模型能够更好地关注小目标的重要信息。HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection采用多分支特征提取策略,通过不同分支提取不同尺度和层次的特征。利用局部、全局和串行卷积分支,对输入特征张量进行处理。通过控制 patch size参数实现局部和全局分支的区分,计算非重叠原创 2025-01-25 08:47:37 · 413 阅读 · 0 评论 -
YOLOv11改进策略【Head/分割头】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进分割头, 优化模型(独家改进)
在大规模视觉预训练中,通常模型的性能受到数据、参数和FLOP三个关键因素的影响。一般来说,模型的参数数量越多,FLOP也越高,但在移动设备等对计算资源有限制的场景下,需要低FLOP的模型同时又希望模型能从大规模预训练中受益。传统的方法很难在增加参数的同时保持低FLOP,因此需要一种新的设计来解决这个问题,模块应运而生。原创 2025-01-24 09:52:25 · 387 阅读 · 0 评论 -
YOLOv11改进策略【Neck】| NeurIPS 2023 融合GOLD-YOLO颈部结构,强化小目标检测能力
颈部结构的设计旨在解决传统信息融合方法的缺陷,提升模型性能。原创 2025-01-17 12:58:23 · 1148 阅读 · 0 评论 -
YOLOv11改进策略【独家融合改进】| RepVit+ASF-YOLO,轻量提点,适用专栏内所有的骨干替换
一、本文介绍本文记录的是基于RepVit的YOLOv11轻量化改进方法研究。RepVit通过分离的token mixe和channel mixer减少推理时的计算和内存成本,同时减少扩展比率并增加宽度,降低延迟,并通过加倍通道来弥补参数大幅减少的问题,提高了准确性。在此基础之上,将YOLOv11的颈部网络改进成ASF-YOLO的结构,使模型能够有效的融合多尺度特征,捕获小目标精细信息,并根据注意力机制关注小目标相关特征,显著提高模型精度。专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、原创 2025-01-17 10:51:08 · 487 阅读 · 0 评论 -
YOLOv11改进策略【模型轻量化】| EMO:ICCV 2023,结构简洁的轻量化自注意力模型
EMO模型旨在为移动应用设计高效的基于注意力的轻量级模型,在多个视觉任务上取得了优异的性能。原创 2025-01-17 08:43:51 · 490 阅读 · 0 评论 -
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
是一种通用感知大核卷积神经网络,其模型结构设计旨在解决现有大核卷积神经网络存在的问题,并探索卷积神经网络在多模态领域的通用感知能力。原创 2025-01-16 10:36:53 · 297 阅读 · 0 评论 -
YOLOv11改进策略【独家融合改进】| Mamba-YOLO+SDI 增强长距离依赖,聚焦目标特征
一、本文介绍本文记录的是利用Mamba-YOLO优化YOLOv11的目标检测网络模型。Mamba-YOLO模型是一种基于状态空间模型的目标检测模型,旨在解决传统目标检测模型在处理复杂场景和长距离依赖关系时的局限性,是目前最新的发文热点。本文在此基础上添加SDI模块,融合改进后的模型能够更精准地聚焦于图像中的目标物体,有效抑制背景及其他干扰因素,凸显目标的关键特征与位置信息。专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全原创 2025-01-15 16:23:42 · 685 阅读 · 0 评论 -
YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
RMT模型是一种具有显式空间先验的视觉骨干网络,旨在解决中自注意力机制存在的问题。原创 2025-01-15 16:18:04 · 288 阅读 · 0 评论 -
YOLOv11改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
FreqFusion是一种旨在解决密集图像预测任务中特征融合问题。原创 2025-01-15 16:12:26 · 613 阅读 · 0 评论 -
YOLOv11改进策略【独家融合改进】| AssemFormer + HS-FPN 减少目标尺度变化影响,增加多尺度的学习能力
HS - FPN结构由特征选择模块和特征融合模块组成。特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。原创 2025-01-13 14:22:56 · 389 阅读 · 0 评论 -
YOLOv11改进策略【独家融合改进】| SPD-Conv+PPA 再次提升模型针对小目标的特征提取能力
SPD-Conv是一种新的 CNN 构建模块,用于替代传统 CNN 架构中使用的步长卷积(strided convolution)和池化(pooling)层,它由空间到深度(Space-to-depth,SPD)层和非步长卷积(non - strided convolution)层组成。原创 2025-01-13 14:20:11 · 1014 阅读 · 0 评论 -
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
一、本文介绍本文记录的是基于 GhostNetV3 的 YOLOv11 轻量化改进方法研究。GhostNetV3的轻量模块采用重参数化方法,训练时为深度可分离卷积和1×1卷积添加线性并行分支,推理时通过逆重参数化移除分支、折叠操作,能够在不增加推理成本的同时提高性能,从而实现YOLOv11的轻量化改进。专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv11改进专栏——以发表论文的角度,快速原创 2025-01-13 14:12:23 · 482 阅读 · 0 评论 -
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
PKI Module是。原创 2025-01-11 15:54:43 · 377 阅读 · 1 评论 -
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
是一种全新的ConvNet模型家族,旨在提升纯卷积神经网络在各类下游任务中的性能。它在模型结构设计上有独特的出发点,结构原理涉及多个创新组件,并且在性能上展现出显著优势。原创 2025-01-11 14:47:55 · 558 阅读 · 0 评论 -
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
LSK module是。原创 2025-01-11 09:35:34 · 298 阅读 · 0 评论 -
YOLOv11改进策略【独家融合改进】| AFPN渐进式自适应特征金字塔 + 注意力机制,适用专栏内所有的注意力模块
本文利用 AFPN 和 注意力模块 对YOLOv11的网络模型进行优化提升。本文以为例,目的是让网络能够学习到更深层的语义信息,并结合的渐近式融合及自适应空间融合操作,逐步整合不同层级特征,有效避免非相邻层级间因语义差距过大导致的信息丢失或降级问题,进而提高模型整体性能。AFPN: Asymptotic Feature Pyramid Network for Object Detection在目标检测中,物体尺寸不确定,单尺度特征提取会丢失信息,因此常用特征金字塔架构。但传统如等方法在融合非相邻层特征时,高原创 2025-01-10 16:40:44 · 535 阅读 · 0 评论 -
YOLOv11改进策略【独家融合改进】| MobileNetV4+BiFPN,轻松实现降参涨点,适用专栏内所有的骨干替换
可扩展的高效物体检测BiFPN(加权双向特征金字塔网络)原创 2025-01-09 16:19:45 · 846 阅读 · 0 评论 -
YOLOv11改进策略【Head】| AFPN渐进式自适应特征金字塔,增加针对小目标的检测头(附模块详解和完整配置步骤)
一、本文介绍本文利用AFPN对YOLOv11的网络模型进行优化提升。AFPN采用渐近式融合及自适应空间融合操作。通过渐近式架构,逐步整合不同层级特征,有效避免非相邻层级间因语义差距过大导致的信息丢失或降级问题,确保在多尺度特征融合过程中既能保留高层语义信息,又能融入低层细节特征。本文将AFPN应用于YOLOv11中,并配置了针对小目标的检测头,能显著增强模型对不同尺度目标的检测能力,使其在复杂场景下更聚焦于目标物体特征,减少背景等无关信息的影响。专栏目录:YOLOv11改进目录一览 | 涉及卷积层、原创 2025-01-09 15:29:34 · 737 阅读 · 5 评论 -
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
在目标检测中,处理多尺度物体是一个具有挑战性的问题。虽然特征金字塔或多级特征塔是解决多尺度问题的常用方法,但在单阶段检测器中,不同尺度特征之间的不一致性限制了其性能提升。为了解决这个问题,提出了自适应空间特征融合(ASFF)模块。原创 2025-01-08 16:41:03 · 771 阅读 · 0 评论 -
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
本文记录的是。采用深度可分离卷积将标准卷积分解为深度卷积和1×1卷积。同时,引入来,避免非线性层导致的性能下降问题。本文将应用到YOLOv11中,借助其高效的结构和特性,在保持一定精度的前提下,显著降低YOLOv11的计算复杂度和内存占用。原创 2025-01-08 13:56:57 · 201 阅读 · 0 评论 -
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
本文记录的是基于MobileNetV1的YOLOv11轻量化改进方法研究。基于构建,其设计旨在满足移动和嵌入式视觉应用对模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将用到YOLOv11中,有望借助其高效的结构和特性,提升YOLOv11在计算资源有限环境下的性能表现,同时保持一定的精度水平。原创 2025-01-07 15:38:27 · 219 阅读 · 0 评论 -
YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
HS - FPN结构由特征选择模块和特征融合模块组成。特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。原创 2025-01-07 09:39:41 · 1794 阅读 · 0 评论 -
YOLOv11改进策略【Neck】| 替换RT-DETR中的CCFF跨尺度特征融合颈部结构,优化计算瓶颈与冗余问题
RT-DETR中的CCFF模块用于优化多尺度特征融合,解决传统方法的计算瓶颈与冗余问题,提升模型速度与精度,以适应实时检测需求。原创 2025-01-06 14:12:35 · 731 阅读 · 0 评论 -
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
本文记录的是基于 EfficientNet v2 的 YOLOv11 轻量化改进方法研究。针对存在的训练瓶颈,如以及等情况进行改进,以实现和的优势,将其应用到YOLOv11中有望提升模型整体性能,。本文在替换骨干网络中配置了原论文中的和四种模型,以满足不同的需求。原创 2025-01-06 13:23:37 · 351 阅读 · 0 评论