自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 Deep Learning × ECG (5) :利用循环神经网络RNN对心律失常ECG数据进行分类

循环神经网络RNN的提出主要针对于时间序列数据。类似于股票、心律失常 ECG 和 电力数据 等数据都是属于时间序列数据。RNN模型具有记忆功能。时间序列数据前一时刻的数据可能会影响后一时刻的数据;因此,循环神经网络在时间序列数据上有着较好的性能。简单地说,循环神经网络目的在于探索序列之间的关系!!!它是根据"人的认知是基于过往的经验和记忆"这一观点提出的。需要注意的是,该类模型主要处理一维数据。鉴于其记忆功能,能够将前后数据进行关联,因此循环神经网络模型在一维数据的处理上获得了较好的表现。目前,主流的循环神

2022-07-11 23:13:11 3131 11

原创 Deep Learning × ECG (4) :利用卷积神经网络CNN对心律失常ECG数据进行分类

本文主要就是介绍搭建模型和模型训练了!!根据 AAMI (简称:美国心脏病协会) 提供的标准:将心拍分为五大类,分别是N、S、V、F和Q,五大类又包含了一些小类;具体如下,大家啊可以参考一下:在目前大多数论文的工作中,都是针对于以上五大类进行分类。但由于S类和V类的特征很相似,往往导致准确率降低,不是很高;当然,也有很多工作专门针对于这两类。本篇博客则主要简单介绍一下以卷积神经网络CNN为代表的深度学习模型对N、L、R、A和V五大类进行分类。具体如下(代码的解释已经在注释中,大家可以参考):由于以 心

2021-10-25 12:56:50 6975 39

原创 Deep Learning × ECG (3) :心律失常ECG数据的预处理

ECG的预处理过程包括:降噪、截取心拍、存放心拍和标签。1. 降噪关于信号类的数据在放入网络中训练之前一般都需要经过处理,降噪,去噪等;ECG数据也不另外。对于信号类数据去噪的方法有很多,比如:傅里叶变换,小波变换,中值滤波法等等。这里主要以小波变化进行降噪,因为本人不是学通信和电信科班出身,对于小波的了解也只是皮毛,这里就直接贴代码了;如果有想了解小波的,网上很多帖子都有介绍的,大家可以去看看;如果有这方面的大佬,可以直接在评论区留言哇,给大家分享分享。# 小波去噪预处理def denoise(

2021-05-08 12:34:49 6463 16

原创 Deep Learning × ECG (2) :利用WFDB包读取心律失常ECG数据

本篇主要介绍使用WFDB工具对ECG数据操作,能够直接读取心电信号数据。WFDB包可以直接获取ECG心拍类型,读取心电记录,读取R峰等等以及利用matplotlib绘制心电信号波形。1. 安装wfdb包如果你已经安装了Anaconda和Pycharm,可以直接在Termnial下,执行如下命令:pip install wfdb安装完成后,使用命令检查,是否安装成功。import wfdbprint(wfdb.__version__)显示版本号,即安装成功2. 显示所有的心跳类型imp

2021-05-07 22:08:19 7052 20

原创 Deep Learning × ECG (1) :关于心律失常ECG的基础常识

随着深度学习的火热发展,越来越多的领域都将深度学习方法和自己的领域相互结合,深度学习也成为了解决问题的一种方案。医疗领域也不另外;例如:通过对ECG数据进行分类、预测等等,来判断病人的心脏状况。如果要涉及ECG分类识别、预测等领域;那么就需要对ECG(也就是我们常说的心跳)有所了解;例如心跳类型、什么是导联、P波,QRS复合波,T波的位置分别在哪等等。本篇暂不涉及技术内容,主要介绍:什么是导联?如何看心电图纸?心电小常识常用的ECG数据库1. 什么是导联?这个其实已经涉及到医学生的相

2021-05-07 20:40:12 3350 7

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除