卷积运算和特征图的维度变换

卷积运算基本知识
摘要由CSDN通过智能技术生成

目录

一.维度缩放

二.特征提取

补充一点

一.维度缩放

对于图像的特征图卷积操作来说,例如YOLOv3里的default input图像尺寸是416*416*3,对于堆叠的第三个维度来说(这里是3),是由卷积核的channel来决定的。比如Darknet对416*416*3的第一层卷积操作之后得到的是208*208*32,所以卷积核的后两个维度是3,32 (整体为3*3*3*32)。

也就是说卷积核的前两个长度为特征提取需要,后两个为维度控制需要。这也就是为什么1*1卷积经常用来降维的原因,它不改变特征图的长宽,而只是通过调整卷积核的channel来控制特征图的后两个维度。

二.特征提取

对于图像的特征提取来说,长宽的变化是由f,p,s三个参数决定的,分别是卷积核的大小,padding的填补长度和stride步长。具体变换的公式如下:

floor((n+2p-f)/s+1),防止图片被吞

默认情况下,卷积核经常使用1*1或者3*3,卷积核的尺寸越大,感受野也越大,对特征提取的效果一般也会越好,但是感受野越大也会导致模型的运算复杂性提高。s一般选择的是2,通过公式我们可以发现固定了n,f,s的数值,那我们可以通过调控p的值就可以做到控制输出特征图的长宽了,这也就是为什么pytroch里可以直接指定in_channel和out_channel的原因。

补充一点

假设n*n的卷积核stride大于n

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是一个基于PyTorch实现的多通道卷积神经网络的代码示例: ```python import torch.nn as nn class Conv2D(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True): super(Conv2D, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias) self.relu = nn.ReLU() def forward(self, x): x = self.conv(x) x = self.relu(x) return x class MultiChannelCNN(nn.Module): def __init__(self, in_channels, out_channels, kernel_size): super(MultiChannelCNN, self).__init__() self.conv = Conv2D(in_channels, out_channels, kernel_size) def forward(self, x): conv_outputs = [] for i in range(x.shape[1]): conv_outputs.append(self.conv(x[:, i:i+1, :, :])) return torch.cat(conv_outputs, dim=1) ``` 这个模型接受一个输入张量 `x`,它的形状为 `(batch_size, in_channels, height, width)`,其中 `batch_size` 是批量大小,`in_channels` 是输入通道数,`height` 和 `width` 是输入像的高度和宽度。模型对每个输入通道分别进行卷积,并将它们沿着通道维度进行拼接。卷积使用一个大小为 `kernel_size` 的卷积核,输出通道数为 `out_channels`。 要使用这个模型,你可以按照以下方式进行实例化: ```python model = MultiChannelCNN(in_channels=3, out_channels=64, kernel_size=3) ``` 这个示例中,输入张量的通道数为 3,输出通道数为 64,卷积核的大小为 3x3。在模型的前向传递过程中,每个输入通道都会通过卷积层进行卷积,并将它们沿着通道维度进行拼接,最终输出一个形状为 `(batch_size, out_channels, height, width)` 的特征。 ### 回答2: 要实现一个多通道的卷积神经网络,首先需要定义一个类`conv2D`。该类应具有以下功能:初始化权重矩阵、进行卷积操作、计算卷积后的特征。 首先,在类的初始化函数中,应该接收以下参数: - 输入通道数 `in_channels` - 输出通道数 `out_channels` - 卷积核大小 `kernel_size` 在初始化函数中,可以随机生成权重矩阵。权重矩阵的大小应为 `(out_channels, in_channels, kernel_size, kernel_size)`,其中 `out_channels` 表示输出通道数,`in_channels` 表示输入通道数,`kernel_size` 表示卷积核大小。 接下来,定义一个卷积函数 `convolution`,接收输入特征 `input_features` 和权重矩阵 `weights` 作为参数。在这个函数中,首先需要对输入特征进行 padding,以便保持输出特征和输入特征的大小一致。然后,使用权重矩阵 `weights` 对每个通道进行卷积操作,将每个通道的卷积结果相加得到输出特征。最后,使用激活函数对输出特征进行非线性变换。 最后,在类中定义一个函数 `forward`,接收输入特征 `input_features` 作为参数。在这个函数中,调用之前定义的卷积函数,将输入特征和初始化的权重矩阵作为参数传入。最终返回卷积后的特征作为输出。 以上就是实现一个类`conv2D`的多通道卷积神经网络的步骤,该网络可以进行卷积操作并返回卷积后的特征。注意,以上是伪代码形式的描述,具体实现过程中还需要考虑各种边界情况和调试。 ### 回答3: 要实现一个conv2D类的多通道卷积神经网络并返回卷积后的特征,我们需要按照以下步骤进行: 1. 初始化参数:首先要初始化卷积核的权重值和偏置值。卷积核的权重值应该是一个由随机数生成的矩阵,而偏置值可以初始化为0。 2. 前向传播:通过卷积操作对输入的多通道特征进行卷积运算。我们可以使用两个嵌套的for循环来实现这个过程。对于每个卷积核,我们可以在每个通道的输入特征上进行滑动,计算卷积结果。最终将每个卷积核得到的卷积结果进行相加,得到最终的特征。 3. 激活函数:对卷积后的特征应用激活函数,如ReLU函数,以增加非线性特性。 4. 返回特征:将得到的特征作为输出返回。 以下是一个示例代码,演示了如何实现一个conv2D类的多通道卷积神经网络并返回卷积后的特征。 ```python import numpy as np class conv2D: def __init__(self, num_filters, filter_size): self.num_filters = num_filters self.filter_size = filter_size self.weights = np.random.randn(num_filters, filter_size, filter_size) / (filter_size ** 2) self.bias = np.zeros((num_filters, 1)) def forward(self, input): num_channels, input_size, _ = input.shape output_size = input_size - self.filter_size + 1 output = np.zeros((self.num_filters, output_size, output_size)) for i in range(output_size): for j in range(output_size): for k in range(self.num_filters): output[k, i, j] = np.sum(input[:, i:i+self.filter_size, j:j+self.filter_size] * self.weights[k]) + self.bias[k] return output # 测试 input = np.random.randn(3, 5, 5) # 输入特征为3通道,尺寸为5x5 conv_layer = conv2D(2, 3) # 创建一个具有2个卷积核,大小为3x3的卷积层 output = conv_layer.forward(input) # 进行卷积操作 print(output.shape) # 输出:(2, 3, 3),表示卷积后的特征大小为3x3,通道数为2 ``` 这个示例演示了一个具有2个卷积核和3x3大小的卷积层,输入特征为3通道和5x5大小的像,输出特征的大小为3x3,通道数为2。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值