一、卷积神经网络的运算
1.特征图(feature maps)
[b,w,h,c]表示b张照片,有3个维度:w维度(行)、h维度(列)和c维度(通道数)
说明:h和w是位置维度,c是特征维度
2.感受野(receptive field)
局部关注的特性
3.矩阵基本运算思路
局部感受野的矩阵权值和数值对应相乘然后累加
4.CNN的内核
1) CNN将一个数组或图像(二维或三维,灰度或彩色)作为输入,并试图学习这个图像和一些目标数据之间的关系,例如分类。通过 "学习",我们仍然在谈论权重,就像在一个普通的神经网络中。CNN的不同之处在于,这些权重将输入的小部分连接到第一层的每个不同的神经元。从根本上说,在一个层中有多个神经元,它们对输入的同一小节都有各自的权重。这些不同的权重集被称为 "内核"。
2) 卷积核的大小和通道
[ N c a b ]表示N个输入c个权值/通道(N个核),axb的卷积核大小。
二、卷积神经网络
1.padding & stride(步长?)
[b,w,h,c]表示b张照片,有3个维度:w维度(行)、h维度(列)和c维度(通道数)
通过增加padding和stride可以使得h'和w'变得可调节。
通过padding使得h'和w'变大,通过stride使得h'和w'成倍地减小。
2.layers.conv2D
--call-- 完成成像传播