卷积神经网络

一、卷积神经网络的运算

1.特征图(feature maps)

[b,w,h,c]表示b张照片,有3个维度:w维度(行)、h维度(列)和c维度(通道数)

        说明:h和w是位置维度,c是特征维度

2.感受野(receptive field)

局部关注的特性

3.矩阵基本运算思路

局部感受野的矩阵权值和数值对应相乘然后累加\sum_{}^{}w_{ij}x_{ij}

4.CNN的内核

1) CNN将一个数组或图像(二维或三维,灰度或彩色)作为输入,并试图学习这个图像和一些目标数据之间的关系,例如分类。通过 "学习",我们仍然在谈论权重,就像在一个普通的神经网络中。CNN的不同之处在于,这些权重将输入的小部分连接到第一层的每个不同的神经元。从根本上说,在一个层中有多个神经元,它们对输入的同一小节都有各自的权重。这些不同的权重集被称为 "内核"。

2) 卷积核的大小和通道

[ N c a b ]表示N个输入c个权值/通道(N个核),axb的卷积核大小。

二、卷积神经网络

1.padding & stride(步长?)

[b,w,h,c]表示b张照片,有3个维度:w维度(行)、h维度(列)和c维度(通道数)

通过增加padding和stride可以使得h'和w'变得可调节。

通过padding使得h'和w'变大,通过stride使得h'和w'成倍地减小。

2.layers.conv2D

--call--  完成成像传播

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值