题目描述
一个箱子里有n个黑球,m个白球,小王想要连续q次从箱子里随机的取出k个球(每次取出k个后立即放回),连续q次取球k个都为黑球的概率是多少,结果对1e9+7取模。
题解:
#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
const int maxn=2e5+10;
#define ll long long
ll jc[maxn];//储存阶乘
ll ksm(ll a,ll b){//a^b
ll res=1;
while(b>0){
if(b&1){
res=(res*a)%mod;
}
b>>=1;
a=(a*a)%mod;
}
return res;
}
ll conv(ll a,ll b){//a/b 转化为乘法:a*b^(mod-2)%mod
return a*ksm(b,mod-2)%mod;
}
ll c(ll n,ll k){//从n个中取k个的概率
return conv(jc[n],jc[n-k]*jc[k]%mod);
}
int main(){
jc[0]=1;
for(int i=1;i<maxn;i++){
jc[i]=jc[i-1]*i%mod;
}
int t;
cin>>t;
while(t--){
ll k,q,n,m;
cin>>n>>m>>k>>q;
if(k>n){
cout<<0<<endl;
continue;
}
else{
ll res=conv(c(n,k),c(m+n,k));
cout<<ksm(res,q)<<endl;
}
}
return 0;
}