import java.util.Scanner;
public class Merge {
static int n;//输入规模
static int q[];//待排数组
static int tmp[];//中间数组
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
q = new int[n];
tmp = new int[n];
for(int i = 0; i < n; i ++)
q[i] = sc.nextInt();
merge_sort(0,n-1);
for (int i = 0; i < n; i++) {
System.out.print(q[i]+" ");
}
}
private static void merge_sort(int l, int r) {
if(l >= r) return;//递归边界
//每次把q[l,r]从中间切开,对两部分分别递归,对递归到最底层每部分只有一个元素为止,这时候每部分只有一个元素,我们可以把每部分看做是有序的
int mid = (l + r) / 2;
merge_sort(l, mid);
merge_sort(mid + 1, r);
//从最底层开始对q[l,mid]和q[mid+1,r]进行排序合并,赋值到中间数组tmp中
//k表示tmp数组下标,从0开始存储,i表示当前数组左半部分的第一个元素,j表示当前数组右半部分的第一个元素
int k = 0, i = l, j = mid + 1;
while(i <= mid && j <= r)
if (q[i] <= q[j]) tmp[k ++] = q[i ++];
else tmp[k ++] = q[j ++];
while(i <= mid)tmp[k ++] = q[i ++];
while(j <= r)tmp[k ++] = q[j ++];
//将tmp中的数据(排序好的数据)覆盖q到对应位置上
for (i = l, k = 0; i <= r; i ++ ,k ++)q[i] = tmp[k];
}
}
import java.util.Scanner;
public class Quick {
static int n;
static int q[];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
q = new int[n];
for(int i = 0; i < n; i ++)
q[i] = sc.nextInt();
quick_sort(0,n-1);
for (int i = 0; i < n; i++) {
System.out.print(q[i]+" ");
}
}
private static void quick_sort(int l, int r) {
if (l >= r) return;
//分界点元素x被设为数组[l,r]中间位置元素,while循环结束后x左侧元素比x小,x右侧元素比x大
//i指向序列左侧边界前一个位置,j指向序列右侧边界后一个位置
int x = q[ ( l + r ) / 2 ], i = l-1, j = r + 1;
while(i < j){
do i++;while(q[i] < x);
do j--;while(q[j] >x);
if (i < j){
int m = q[i];
q[i] = q[j];
q[j] = m;
}
}
//递归对数组[l,r]左半部分[l,j]和右半部分[j+1,r]分别快排
quick_sort(l,j);
quick_sort(j+1,r);
}
}
什么时候能用二分:
题目数据满足单调性,那么一定可以用二分来解决,如果不具有单调性但具有二段性,那么有时候也可以用二分来解决。
整数二分步骤:
1.找一个区间[L,R],使得答案一定在该区间中。
2.找一个判断条件,使得该判断条件具有二段性,并且答案一定在二段性的分界点。
3.分析中点mid在该判断条件下是否成立,如果成立,考虑答案在哪个区间;如果不成立,考虑答案在哪个区间。
4.如果更新方式写的是r=mid,则不用做特殊处理;如果更新方式写的是l=mid,则需要在计算mid时+1。
整数二分算法模板
bool check(int x) {/* ... */} // 检查x是否满足某种性质
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid; // check()判断mid是否满足性质
else l = mid + 1;
}
return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}
浮点数二分算法模板
bool check(double x) {/* ... */} // 检查x是否满足某种性质
double bsearch_3(double l, double r)
{
double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求
while (r - l > eps)
{
double mid = (l + r) / 2;
if (check(mid)) r = mid;
else l = mid;
}
return l;
}
整数二分例题:Input数组元素个数及有序数组内容,待查询元素,输出一个下标范围表示该元素在数组中的起止位置。
import java.util.Scanner;
public class Main {
static int n;
static int a[];
public static void main(String args[]) {
Scanner scan = new Scanner(System.in);
n = scan.nextInt();
a = new int[n];
for(int i = 0;i < n;i ++) {
a[i] = scan.nextInt();
}
int x = scan.nextInt();
int l = 0,r = n-1;
while(l < r) {
int mid = l + r >> 1;
if(a[mid] >= x) {//判断条件使得答案落在左区间
r = mid;
}else {
l = mid + 1;
}
}
System.out.print(r+" ");//此时l=r
l = 0;
r = n-1;
while(l < r) {
int mid = l + r + 1 >> 1;
if(a[mid] <= x) {//判断条件使得答案落在右区间
l = mid;
}else {
r = mid - 1;
}
}
System.out.println(r);//此时l=r
scan.close();
}
}
浮点二分例题:求三次根号下n,保留六位小数
package org.constructorInject;
import java.util.Scanner;
public class M {
static double n;
public static void main(String args[]) {
Scanner scan = new Scanner(System.in);
n = scan.nextDouble();
double l = -10000, r = 10000;
while(r-l > 1e-8) {
double mid = (l + r) /2;
if(mid*mid*mid <= n)
l = mid;
else
r = mid;
}
System.out.printf("%06f",r);
scan.close();
}
}