最优分解问题(贪心+动态规划)

将n分解为若干互不相同的自然数的和,并且使这些自然数的乘积最大,最大乘积是多少?

方法一:(这个好像错了,别看这个,还在想怎么改进)
动态规划

#include <bits/stdc++.h>

using namespace std;

int main(){
	int n;
	cin>>n;
	int a[100];
	//记录每个数的最大乘积是由该数的哪两个数分解而来的 
	int flag[100][2];
	//初始最大乘积为该数本身(不分解) 
	for(int i=1;i<=n;i++){
		a[i]=i;
		flag[i][0]=i;
		flag[i][1]=-1; 
	} 
	//从3开始分别求最大值 
	for(int i=3;i<=n;i++){
		for(int k1=1;k1<=(i+1)/2;k1++){
			int k2 = i-k1;
			//i=k1+k2,用k1和k2的最大值a[k1]*a[k2],但是要注意a[k1]和a[k2]的组成不能相同 
			if(k1!=k2&&flag[k1][0]!=k2&&flag[k1][1]!=k2&&flag[k2][0]!=k1&&flag[k2][1]!=k1&&a[k1]*a[k2]>a[i]){
				a[i]=a[k1]*a[k2];
				flag[i][0]=k1;
				flag[i][1]=k2;	
			}
			//i=k1+k2,用k1和k2本身
			if(k1!=k2&&k1*k2>a[i]){
				a[i]=k1*k2;
				flag[i][0]=k1;
				flag[i][1]=k2;	
			}
		}
		cout<<a[i]<<" ";
	}  
	return 0;
} 

方法二(搬运):
若a+b等于一个常数,则|a-b|越小,ab就越大。
要使得加数互不相同,又尽可能集中,那加数只能是连续的自然数了。
将n分成从2开始的连续的自然数的和。如果最后剩下一个数,
将此剩余数从后项开始的方式下均匀地分给前面各项。

如:10
首先分解为:2+3+4 剩余 1 
从后开始,所以 1 加到 4 上 
变成 2+3+5,此时乘积最大 

原文链接:https://blog.csdn.net/LDUtyk/article/details/53898892

#include <stdio.h>
int main()
{
	int n;
	int a[100];
	scanf("%d",&n);
	int x=2;
	int index=0;
	a[index++]=x;
	n-=x;
	while(n>a[index-1])
	{
		a[index]=a[index-1]+1;
		n-=a[index];
		index++;
	} 
	int num=index-1;
	while(n)
	{
		a[num]++; 
		num=(num-1+index)%(index); 
		n--;
	} 
	int result=1;
	for(int i=0;i<index;i++)
	{
		result*=a[i];
	 } 
	 printf("%d\n",result);
	
	return 0;
 } 

在这里插入图片描述

最优分解问题是指将一个正整数n分解成若干个正整数之和,使得这些正整数的乘积最大。可以使用动态规划来解决这个问题。 以下是C语言代码实现: ```c #include <stdio.h> int max(int a, int b) { return a > b ? a : b; } int main() { int n; scanf("%d", &n); int dp[n + 1]; dp[0] = dp[1] = 0; for (int i = 2; i <= n; i++) { dp[i] = 0; for (int j = 1; j < i; j++) { dp[i] = max(dp[i], j * (i - j)); dp[i] = max(dp[i], j * dp[i - j]); } } printf("%d\n", dp[n]); return 0; } ``` 首先定义一个`max`函数,用于比较两个数的大小,返回较大的数。然后读入正整数n,并定义一个数组`dp`,其中`dp[i]`表示将正整数i分解成若干个正整数之和,使得这些正整数的乘积最大的乘积值。 接下来,我们使用动态规划的思想来计算`dp`数组。首先将`dp[0]`和`dp[1]`都赋值为0。然后从`dp[2]`开始,依次计算`dp[2]`到`dp[n]`的值。 对于每个`dp[i]`,我们可以将其分解成j和i-j两个数的和,其中j是从1到i-1的正整数。因此,我们可以分两种情况考虑: - 将i分解成j和i-j两个数的和,并将它们相乘,得到j * (i-j)这个乘积值。然后将这个乘积值和当前的`dp[i]`比较,保留较大的值。 - 将i分解成j和若干个正整数之和,使得这些正整数的乘积最大。因此,我们可以将这些正整数的乘积值看作是`dp[i-j]`,然后将j和`dp[i-j]`相乘,得到j * dp[i-j]这个乘积值。然后将这个乘积值和当前的`dp[i]`比较,保留较大的值。 最后,`dp[n]`就是将正整数n分解成若干个正整数之和,使得这些正整数的乘积最大的乘积值。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姓蔡小朋友

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值