【西电博士论文】分布式 MIMO 雷达目标检测 若干关键技术研究 【附MATLAB代码】

微信公众号:EW Frontier

QQ交流群:1022600869

如有侵权请联系删除~

摘要

注:代码仅包含MIMO雷达部署及波形设计、雷达目标跟踪精度仿真、雷达站功率分配仿真、双门限广义似然比算法仿真。该论文仅为部分仿真代码参考。仿真结果如下:

在日益复杂的作战环境中,分布式雷达系统扮演着越来越重要的角色。分布式雷 达系统不仅可以通过观测不同区域进行协同作战,也可以通过观测相同区域来提高探 测威力。分布式雷达系统具有良好的性能增益和灵活多变的工作方式,是现代雷达技 术发展的重要方向之一。 

本文主要的研究内容是分布式雷达系统信号级融合检测算法。由于目标在不同的 空间角度上具有不同的空间散射特性,分布式多输入多输出(Multiple-Input Multiple-Output, MIMO)雷达可以利用这种特性得到空间分集增益,从而提高雷达系 统的目标检测性能。如何降低各种不利因素对分布式雷达系统的影响和在保证稳定的 探测性能条件下尽量降低实现代价是分布式雷达系统在实际应用中亟需解决的两个 重要问题。本文着重研究了分布式雷达系统的三个关键问题:首先,分析了信噪比 (Signal-to-Noise Ratio, SNR)差异问题对信号级融合检测性能的影响,并给出了相 应的改进方法以保证较好的检测性能;其次,考虑到信号级融合算法数据传输量大的 问题,研究了双门限信号级融合检测算法,在大大降低传输数据量的同时保证较好的 检测性能;最后,考虑到分布式雷达系统的配准误差不可避免,分析了空间配准误差 对信号级融合检测性能的影响,并提出了相应的改进方法来保证检测器对配准误差具 有较好的稳健性。本文具体的研究内容如下:

1、简单介绍了分布式 MIMO 雷达常规的信号级融合检测算法。首先,给出了经 典的系统结构、信号模型和信号处理流程。根据是否已知先验 SNR 信息,推导了传 统的似然比(Likelihood Ratio Test, LRT)检测器和非相干积累(Non-Coherent Integration, NCI)检测器。与传统的单基地雷达进行对比,说明空间分集增益对分布 式雷达检测性能的改善。其次,对比了 LRT 检测器与 NCI 检测器在各通道 SNR 不同 时的检测性能,分析了先验 SNR 信息对检测性能的影响。最后,通过仿真实验对分 布式雷达系统的检测性能进行了详细评估。

2、研究了 SNR 差异对分布式 MIMO 雷达信号级融合检测性能的影响。对于 LRT检测器,由于已知 SNR 信息,因此可以得到最优的检测性能。本文主要研究 SNR 差 异对 NCI 检测器性能的影响,不难理解,当高 SNR 通道与低 SNR 通道进行融合时 有可能会降低系统的检测性能。从数值仿真结果中可以看出,在不同的条件下,增加 相同的低 SNR 通道,对检测性能的影响不同。在 SNR 未知的条件下,为了能够融合 有效的通道,防止低 SNR 通道对检测性能的影响,本文引用统计学中累计贡献率(Cumulative Contribution Rate, CCR)的概念,提出了一种对 SNR 差异稳健的信号级融 合算法。SNR 的大小体现在局部检验统计量上。因此,设定 CCR 门限,对局部检验统计量进行 CCR 计算,可以对高 SNR 通道进行积累。通过数值仿真可以看出,设置 适当的 CCR 门限,可以估计出有效的通道数进行积累,改善存在 SNR 差异时的信号 级融合检测算法性能。 

3、研究了数据传输率约束下的信号级融合检测算法。传统的信号级融合检测算 法要求传输所有的观测数据,对通信量要求较高,增加了系统的成本。在实际工程应 用中,雷达接收回波中大部分为杂波加噪声信号,目标信号是稀疏的,而且杂波加噪 声信号相对于能检测到的目标信号来说功率较小。根据这一特点,本文研究了双门限 信号级融合检测算法,各空间分集通道根据数据传输率要求设置第一门限,经过第一 门限处理,仅将超过第一门限的数据传送给融合中心,然后在融合中心进行信号级融 合检测,与第二门限比较得到最终的判决结果。通过第一门限处理,可以将大部分的 低功率信号剔除,保留有效信号,从而降低数据传输率。通过实验仿真分析,双门限 信号级融合检测算法以较小的检测性能损失下大大降低了数据传输率,具有一定的工 程应用价值。

4、研究了存在空间配准误差时的信号级融合检测算法。本文首先从理论上分析 了分布式 MIMO 雷达中空间配准误差对传统 LRT 检测器的检测性能影响,并推导了 虚警概率和检测概率的显式表达式。存在空间配准误差时,为了有效地提高目标信号 能量的积累,本文提出了一种基于不确定区域的信号级融合检测算法。在每个空间分 集通道中,首先需要估计出目标回波信号在不确定区域的位置,然后将估计出的目标 信号进行融合。根据是否先验已知配准误差分布,提出了广义似然比和贝叶斯似然比 两种检测算法。通过实验仿真分析,可以看出配准误差严重降低信号融合的检测性能, 本文所提出的两种检测算法对于配准误差具有一定的稳健性。

目录

全文内容安排

本文主要对分布式雷达系统的目标检测关键问题进行研究和探索。研究的主要内 容包括:在各空间分集通道 SNR 差异较大时的信号级融合检测算法;数据传输率约 束下的信号级融合检测算法;存在配准误差时的信号级融合检测算法。本文主要分为 六个章节,各章节的具体内容安排如下:

第一章为绪论,首先对分布式 MIMO 雷达以及信号级融合检测的基本概念、研 究意义和研究现状进行了介绍,并简单列举了论文的主要工作。 

第二章重点给出了传统的分布 MIMO 雷达信号级融合检测算法。首先,简单地 描述了分布式 MIMO 雷达系统的结构模型和信号处理基本流程。其次,推导了传统 的 LRT 检测器和非相干积累(Non-Coherent Integration, NCI)检测器;分析了分布式 与单基地雷达系统在目标探测方面的区别,来说明空间分集增益与相干积累增益对检 测性能的影响。最后,通过实验对比了 LRT 与 NCI 检测器在各通道 SNR 不同时的性 能,并分析了先验 SNR 信息对检测性能的影响。 

第三章主要研究了在各空间分集通道存在 SNR 差异时对信号级融合检测算法性 能的影响。对于 LRT 检测器,由于已知 SNR 信息,因此可以得到最优的检测性能。 而对于 SNR 未知的 NCI 检测器,高 SNR 与低 SNR 的数据进行融合时会影响探测性 能。引用统计学中累计贡献率(Cumulative Contribution Rate, CCR)的概念[169],研究 了一种对 SNR 差异稳健的信号级融合算法。该方法可以有效地剔除低 SNR 数据,对 高 SNR 数据进行融合,改善存在 SNR 差异时的信号级融合检测算法性能。 

第四章主要研究了数据传输率约束下的信号级融合检测算法。在实际中,雷达接 收回波中大部分为杂波加噪声信号,目标信号是稀疏的,而且大部分杂波和噪声信号 相对于待检测到的目标信号来说,功率较小。根据这一特点,研究了双门限信号级融 合检测算法。各空间分集通道根据数据传输率要求设置第一门限,经过第一门限处理, 仅将超过第一门限的数据传送给融合中心,然后在融合中心进行信号级融合检测。通 过第一门限处理,可以将大部分的低功率信号剔除,保留有效信号,从而降低数据传 输率。分别对信杂噪比(Signal-to-Clutter-plus-Noise Ratio, SCNR)已知和未知条件下 的单脉冲回波双门限检测算法进行了研究,推导了不同准则下的检测器结构。参考单 脉冲回波的检测器结构,同时也对多脉冲回波的双门限检测算法进行了分析。通过实 验仿真分析,双门限信号级融合检测算法在以较小的检测性能损失下大大降低了对数 据传输率的要求。

第五章主要研究了存在空间配准误差时的信号级融合检测算法。首先,从理论上 分析了空间配准误差对传统 LRT 检测器性能的影响。在一定条件下,推导了虚警概 率和检测概率的显式表达式。雷达系统存在配准误差时,目标回波会出现在一个不确定区域内,其中,不确定区域的大小取决于配准误差的大小,配准误差越大,不确定 区域越大,反之亦然。为了能够对目标信号进行有效积累,在不确定区域内实现信号 级融合检测。在每个空间分集通道中,首先需要估计出目标回波信号在不确定区域的 位置,然后将估计出的目标信号进行融合。在空间配准误差分布未知时,采用 ML 估 计的方法估计出目标信号;在空间配准误差分布已知时,采用贝叶斯估计方法估计出 目标信号。通过实验仿真分析,可以看出配准误差对信号融合检测性能具有很大影响, 本章所提出的两种检测算法对于配准误差具有一定的稳健性。

文章插图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值