微信公众号:EW Frontier QQ交流群:554073254
摘要
自动调制识别(AMR)是现代无线通信中的关键任务,广泛应用于信号处理和频谱感知领域。本项目采用结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)及注意力机制的深度学习模型,对RML2016.10a数据集中的11类调制信号进行分类。
该模型首先利用残差卷积神经网络(ResNet)从输入的IQ两通道信号中提取时域特征,随后通过BiLSTM捕获序列信号的长期依赖性,并利用注意力机制聚焦于关键特征。最后,模型通过全连接层实现对11种调制类型的准确分类。
本文详细展示数据集的预处理步骤、模型架构设计及训练策略,并通过一系列可视化图展示信号的IQ分量及训练过程中的关键结果。本博客为深度学习在无线通信中的应用提供了有效的参考,适合对AMR及信号处理感兴趣的读者学习与借鉴。
关键词
自动调制识别、深度学习、卷积神经网络、双向长短期记忆网络、注意力机制
简介
随着无线通信技术的快速发展,现代通信系统中频谱资源变得日益稀缺。为了更高效地利用频谱资源,自动调制识别(Automatic Modulation Recognition, AMR)成为了信号处理和频谱感知中的一个关键任务。AMR主要通过分析接收到的信号样本,识别出其调制方式,为后续的解调和数据处理提供基础。在传统方法中,AMR依赖于专家知识和手工设计特征,而随着深度学习的兴起,数据驱动的自动特征提取方法逐渐展现出更强的表现力和鲁棒性。
本项目采用了一种结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注