0901-2丢弃法

丢弃法
     

方法:
      在“多层感知机”中,描述了一个单隐藏层的多层感知机,其中输入个数为4,隐藏单元个数为5,且隐藏单元ℎ𝑖(𝑖=1,…,5)的计算表达式为

                                                                     

 

这里𝜙是激活函数,𝑥1,…,𝑥4是输入,隐藏单元𝑖的权重参数为𝑤1𝑖,…,𝑤4𝑖,偏差参数为𝑏𝑖。

     当对该隐藏层使用丢弃法时,该层的隐藏单元将有一定概率被丢弃掉。设丢弃概率为𝑝, 那么有𝑝的概率ℎ𝑖会被清零,有1−𝑝的概率ℎ𝑖会除以1−𝑝做拉伸。丢弃概率是丢弃法的超参数。具体来说,设随机变量𝜉𝑖为0和1的概率分别为𝑝和1−p。使用丢弃法时我们计算新的隐藏单元

                                                                                   

 

由于𝐸(𝜉𝑖)=1−𝑝,因此

                                                                             

 

即丢弃法不改变其输入的期望值。

       那么让我们对“多层感知机”中图的隐藏层使用丢弃法,一种可能的结果如下图所示。

                                                          

 

       在图中ℎ2和ℎ5被清零,这时输出值的计算不再依赖ℎ2和ℎ5,在反向传播时,与这两个隐藏单元相关的权重的梯度均为0。由于在训练中隐藏层神经元的丢弃是随机的,即ℎ1,…,ℎ5都有可能被清零,输出层的计算无法过度依赖ℎ1,…,ℎ5中的任一个,从而在训练模型时起到正则化的作用,并可以用来应对过拟合。

      在测试模型时,为了得到更加确定性的结果,一般不使用丢弃法。

推理中的丢弃法

丢弃概率多取0.5, 0.9, 0.1

Dropout是一个正则项,对模型更新不明显,对。 求梯度对称

 dropout 随机丢弃,精度高,随机性让模型更稳定

只是在训练中把神经元丢弃,预测中神经元不丢弃

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值