丢弃法
方法:
在“多层感知机”中,描述了一个单隐藏层的多层感知机,其中输入个数为4,隐藏单元个数为5,且隐藏单元ℎ𝑖(𝑖=1,…,5)的计算表达式为
这里𝜙是激活函数,𝑥1,…,𝑥4是输入,隐藏单元𝑖的权重参数为𝑤1𝑖,…,𝑤4𝑖,偏差参数为𝑏𝑖。
当对该隐藏层使用丢弃法时,该层的隐藏单元将有一定概率被丢弃掉。设丢弃概率为𝑝, 那么有𝑝的概率ℎ𝑖会被清零,有1−𝑝的概率ℎ𝑖会除以1−𝑝做拉伸。丢弃概率是丢弃法的超参数。具体来说,设随机变量𝜉𝑖为0和1的概率分别为𝑝和1−p。使用丢弃法时我们计算新的隐藏单元
由于𝐸(𝜉𝑖)=1−𝑝,因此
即丢弃法不改变其输入的期望值。
那么让我们对“多层感知机”中图的隐藏层使用丢弃法,一种可能的结果如下图所示。
在图中ℎ2和ℎ5被清零,这时输出值的计算不再依赖ℎ2和ℎ5,在反向传播时,与这两个隐藏单元相关的权重的梯度均为0。由于在训练中隐藏层神经元的丢弃是随机的,即ℎ1,…,ℎ5都有可能被清零,输出层的计算无法过度依赖ℎ1,…,ℎ5中的任一个,从而在训练模型时起到正则化的作用,并可以用来应对过拟合。
在测试模型时,为了得到更加确定性的结果,一般不使用丢弃法。
推理中的丢弃法
丢弃概率多取0.5, 0.9, 0.1
Dropout是一个正则项,对模型更新不明显,对。 求梯度对称
dropout 随机丢弃,精度高,随机性让模型更稳定
只是在训练中把神经元丢弃,预测中神经元不丢弃