数据结构 队列

先进先出的数据结构


在FIFO数据结构中,将首先处理添加到队列中的第一个元素

如上图所示,队列是典型的FIFO数据结构。插入操作也称作入队,新元素始终被添加在队列的末尾删除操作也称为出队,你只能移除第一个元素

队列的实现


  • 为了实现队列,可以使用动态数组指向队列头部的索引
  • 队列支持的两种操作:
    • 入队
    • 出队

  •  缺点:实现简单,但在某些情况下效率很低。随着起始指针的移动,元素出队,但并没有在数组中删除,还占用着内存空间。如此以来,浪费的空间越来越多。当我们有空间限制时,这将是难以接受的。
public class Queue {
	private List<Integer> queue;
	private int head;
	
	public Queue() {
		// TODO Auto-generated constructor stub
		this.queue = new ArrayList<Integer>();
		this.head = 0;
	}
	
	public boolean enQueue(int e) {
		queue.add(e);
		return true;
	}
	
	public boolean deQueue() {
		if(head < queue.size()) {
			System.out.println(queue.get(head)+"已出队!");
			head ++;
			return true;
		}else {
			System.out.print("队列已空!");
			return false;
		}
	}
	
	public boolean isEmpty() {
		return head >= queue.size();
	}
	
	public void printHead() {
		System.out.println("首元素是:"+ queue.get(head));
	}
	
	public static void main(String[] args) {
		Queue queuew = new Queue();
		queuew.enQueue(3);
		queuew.enQueue(7);
		queuew.enQueue(9);
		queuew.enQueue(10);
		queuew.printHead();
		queuew.deQueue();
		queuew.deQueue();
		queuew.deQueue();
		queuew.deQueue();
		queuew.deQueue();
	}
}

 

循环队列——数组实现


      更有效的方法是使用循环队列。具体来说,我们可以使用固定大小的数组两个指针来指示起始位置和结束位置。目的是重用我们之前提到的被浪费的内存

  • 出队:front指针循环意义上的加1。公式:front = (front + 1) % capacity
  • 入队:rear指针循环意义上的加1。 公式:rear = (front + count) % capacity【(rear + 1) % capacity】
class MyCircularQueue {
    private int[] queue;
    //队列当前元素的数量
    private int count;
    //队列的长度
    private int capacity;
    private int front;
    private int rear;

    public MyCircularQueue(int k) {
        queue = new int[k];
        capacity = k;
        count = 0;
        front = 0;
        rear = 0;
    }
    
    public boolean enQueue(int value) {
        if(isFull()){
            return false;
        }
        rear = (front + count) % capacity;
        queue[rear] = value;
        count ++;
        return true;
    }
    
    public boolean deQueue() {
        if(isEmpty()){
            return false;
        }
        front = (front + 1) % capacity;
        count --;
        return true;
    }
    
    public int Front() {
        return isEmpty() ? -1 : queue[front];
    }
    
    public int Rear() {
        return isEmpty() ? -1 : queue[rear];
    }
    
    public boolean isEmpty() {
        return count == 0;
    }
    
    public boolean isFull() {
        return count == capacity;
    }
}

复杂度分析

  • 时间复杂度:O(1)。该数据结构中,所有方法都具有恒定的时间复杂度。
  • 空间复杂度:O(N),其中 N 是队列的预分配容量。循环队列的整个生命周期中,都持有该预分配的空间。

改进:线程安全

上面实现满足所有的要求,但是可能存在一些风险。从并发性来看,该循环队列是线程不安全的

例如:下图的执行序列超出了队列的设计容量,会覆盖队尾元素。

class MyCircularQueue {
    private int[] queue;
    //队列当前元素的数量
    private int count;
    //队列的长度
    private int capacity;
    private int front;
    private int rear;
    private ReentrantLock reenTranLock = new ReentrantLock();;

    public MyCircularQueue(int k) {
        queue = new int[k];
        capacity = k;
        count = 0;
        front = 0;
        rear = 0;
    }
    
    public boolean enQueue(int value) {
        reenTranLock.lock();
        try{
            if(isFull()){
            return false;
            }
            rear = (front + count) % capacity;
            queue[rear] = value;
            count ++;
        }finally{
            reenTranLock.unlock();
        }
        return true;
    }

 单链表实现队列

       单链表 数组都是很常用的数据结构。与固定大小的数组相比,单链表不会为未使用的容量预分配内存,因此它的内存效率更高

class Node{
    int value;
    Node next;
    public Node(int value){
        this.value = value;
        this.next = null;
    }
}

class MyCircularQueue {
    //队列当前元素的数量
    private int count;
    //队列的长度
    private int capacity;
    private Node front;
    private Node rear;

    public MyCircularQueue(int k) {
        capacity = k;
        count = 0;
        front = null;
        rear = null;
    }
    
    public boolean enQueue(int value) {
        if(isFull()){
            return false;
        }
        Node newNode = new Node(value);
        if(isEmpty()){
            front = rear = newNode;
        }else{
            rear.next = newNode;
            rear = rear.next;
        }
        count ++;
        return true;
    }
    
    public boolean deQueue() {
        if(isEmpty()){
            return false;
        }
        front = front.next;
        count --;
        return true;
    }
    
    public int Front() {
        return isEmpty() ? -1 : front.value;
    }
    
    public int Rear() {
        return isEmpty() ? -1 : rear.value;
    }
    
    public boolean isEmpty() {
        return count == 0;
    }
    
    public boolean isFull() {
        return count == capacity;
    }
}

复杂度分析

  • 时间复杂度:O(1),所有方法都具有恒定的时间复杂度。
  • 空间复杂度:O(N),与数组实现相同。但是单链表实现f方式的内存效率更高。

内置的队列库

使用内置队列库常用的一些操作:

// "static void main" must be defined in a public class.
public class Main {
    public static void main(String[] args) {
        // 1. Initialize a queue.
        Queue<Integer> q = new LinkedList();
        // 2. Get the first element - return null if queue is empty.
        System.out.println("The first element is: " + q.peek());
        // 3. Push new element.
        q.offer(5);
        q.offer(13);
        q.offer(8);
        q.offer(6);
        // 4. Pop an element.
        q.poll();
        // 5. Get the first element.
        System.out.println("The first element is: " + q.peek());
        // 7. Get the size of the queue.
        System.out.println("The size is: " + q.size());
    }
}

队列与广度优先搜索BFS

 广度优先搜索(BFS)的一个常见应用是找出从根结点到目标结点的最短路径。在本文中,我们提供了一个示例来解释在 BFS 算法中是如何逐步应用队列的。

 

作者:LeetCode
链接:https://leetcode-cn.com/problems/design-circular-queue/solution/she-ji-xun-huan-dui-lie-by-leetcode/
来源:力扣(LeetCode)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值