量子比特与量子门电路

目录

量子比特

多量子比特

量子门电路

泡利X门

泡利Y门

泡利Z门

哈达玛门(Hadamard)——H门

相位门(phase gate)——S门

Π/8门

受控非门——CNOT门

交换门(SWAP Gate)

受控 Z 门(CZ Gate)

组合电路

分解定理

Toffoli门(CCNOT门)

参考文献


量子比特

纯态|0>,|1>,通用单量子比特表示

                                                          |ψ>=α|0>+β|1>,                                                         (1)

|1>的概率为|β>方,|0>概率为|α>方。可以用布洛赫球来表示单量子比特,

可将(1)式子改写为,

                                    |\psi\rangle=e^{i\gamma }(cos\frac{\Theta }{2})|0\rangle+e^{i\Phi }(sin\frac{\Theta }{2})|1\rangle ) 

其中\Theta ,\Phi定义了三维球上的一个点。测量会改变量子比特的状态,量子比特会发生坍塌,成为|0>或|1>态,所以只有在测量无数个量子比特后才能确定α和 β的值。

多量子比特

两量子比特|ψ>=$ a_{00}$|00>+$ a_{01}$|01>+$ a_{10}$|10>+$ a_{11}$|11>,测量到x=(00,01,10,11)的概率为|a_{x}|^{2},测量后量子比特变为|x>,对第一个量子比特测量得到|0>的概率为|a_{00}|^{2}+|a_{01}|^{2},并且测量后状态发生改变。

量子门电路

在进一步讨论这个问题之前,我先对一些基本的概念作一个简介。

如前所述,在谈论量子计算时,我们谈的是n个 qubit ,对其执行一系列算符操作,最后执行测量。如下图,我们常常画出横着并排的n条直线,从左到右代表着时间顺序,而不同的直线代表不同的 qubit ;在这些直线上排列着各种小方块大方块还有竖线,代表着各种不同的单 qubit 或多 qubit 幺正算符,每一个幺正算符(满足性质 U^{*}U=UU^{*}=I)被称为一个(量子)门;人们常将一些简单的量子门组合成更复杂的量子门;整张图就被称为一个量子网络/量子电路

人们给一些常用的量子门取了特定的名字,列举几个如下:

泡利X门\sigma _{x}

X=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}

作用在单qubit上,用于0,1翻转,相当于经典中的非门,在布洛赫球上相当于 绕x轴旋转180度。

泡利Y门\sigma _{y}

Y=\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}

对量子态施加 Y 门后,量子态在布洛赫球上的状态会绕 Y 轴旋转 180°。

泡利Z门\sigma _{z}

Y=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

对量子态施加 Z 门后,量子态在布洛赫球上的状态会绕 Z 轴旋转 180°。

哈达玛门(Hadamard)——H门

H=\frac{1}{\sqrt2}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}

H门通常用来将纯态qubit,转变为纠缠态

                                    H|0\rangle=\frac{|0\rangle+|1\rangle}{\sqrt2}=|+\rangleH|1\rangle=\frac{|0\rangle-|1\rangle}{\sqrt2}=|-\rangle

相位门(phase gate)——S门

H=\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}

相位门(S 门)是对量子态的相位进行旋转的门,它可以看作是泡利Z 门的一般化。S门只对|1>作用,相当于绕y轴旋转\frac{\pi}{2}S^{2}=Z,两个S门相当于一个Z门

相位因子i即e^{\frac{i\Pi }{2}}

Π/8门(T门)

H=\begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{i\Pi }{4}} \end{pmatrix}

T 门,也称为 Π/8门,是一个相位旋转门,它将量子态的相位旋转 π/4,它是相位门的平方根门T^{2}=S

受控非门——CNOT门

CNOT=\begin{pmatrix} 1 & 0&0&0 \\ 0 &1&0&0\\0 &0&0&1\\0&0&1&0\end{pmatrix}

对于 2 个量子比特系统,CNOT门实现如下功能。

如果控制比特为 ∣0〉,目标比特保持不变

如果控制比特为 ∣1〉,目标比特的状态翻转(即 ∣0〉↔∣1〉)

例如,对于输入状态 ∣10〉,控制比特 ∣1〉,目标比特从 ∣0〉 翻转为 ∣1〉,输出为 ∣11〉

CNOT 门可以用于纠缠态的生成,例如生成贝尔态。

交换门(SWAP Gate)

CNOT=\begin{pmatrix} 1 & 0&0&0 \\ 0 &0&1&0\\0 &1&0&0\\0&0&0&1\end{pmatrix}

交换门的作用就是交换两个量子比特的状态:

对输入状态 ∣ab〉其中 a 和 b 是 0 或 1),SWAP 门将其变为 ∣ba〉

例如,输入状态 ∣10〉通过 SWAP 门后,输出状态将是 ∣01〉

受控 Z 门(CZ Gate)

CNOT=\begin{pmatrix} 1 & 0&0&0 \\ 0 &1&0&0\\0 &0&0&1\\0&0&1&0\end{pmatrix}

当控制比特为 ∣0〉时,目标比特不变。

当控制比特为 ∣1〉时,对目标比特施加 Z 门,使其相位翻转。

例如,对于输入状态 ∣11〉,CZ 门将输出状态 −∣11〉,即施加了一个相位翻转。

CZ 门常用于生成纠缠态(如 GHZ 态)。它与 CNOT 门等价于局部单比特旋转后的结果。

另外还有受控相位门,Toffoli门(Controlled-Controlled-NOT 门,双比特控制门),Fredkin门(Controlled-SWAP 门,受控交换门)。

组合电路

就讲讲toffoli门吧,原来自己一直没有弄清楚。

先引入一些问题/实现目标

获得一个有着足够打维度希尔伯特空间中的量子态ψ;

对其执行任意的幺正算符Uψ;

对整个过程测量以得到经典的结果;

对整个过程进行经典的循环与判断。

而我们已知:

将n个二态系统相干的放在一起,可以得到一个有d=2^{n}维的量子系统;

如何对单个比特执行任意的幺正算符,以及少量比特执行一些简单的幺正演化;

在n-qubit系统上任意复杂的测量都可以分解成一系列幺正算符和单qubit上的测量的叠加;

经典计算机是成熟的。

分解定理

定理1(单量子比特的分解)任何2×2的酉矩阵都可以分解为

                             U=e^{i\alpha }\begin{pmatrix} e^{-i\beta } & 0 \\ 0 & e^{i\beta }\end{pmatrix}\begin{pmatrix} cos\frac{\gamma }{2} & sin\frac{-\gamma }{2} \\ sin\frac{\gamma }{2} & cos\frac{\gamma }{2}\end{pmatrix}\begin{pmatrix} e^{-i\delta } & 0 \\ 0 & e^{i\delta } \end{pmatrix}

其中α,β,γ,δ为实数。

定理1的证明

既然U是幺正的,那么U的行向量和列向量是正交的,那么必然存在实数α,β,γ,δ满足

                                 U=\begin{pmatrix} e^{i(\alpha -\beta /2-\delta /2)}cos\frac{\gamma }{2} & -e^{i(\alpha -\beta /2+\delta /2)}sin\frac{\gamma }{2} \\ e^{i(\alpha +\beta /2-\delta /2)}sin\frac{\gamma }{2} & e^{i(\alpha +\beta /2+\delta /2)}cos\frac{\gamma }{2} \end{pmatrix}

化简得

                                                     U= e^{i\alpha }R_{z}(\beta )R_{y}(\gamma )R_{z}(\delta )

推论4.2  设U是作用于单比特的酉门,那么存在对于单比特的酉算符A,B,C,满足ABC = I

U = e^{i\alpha }AXBXC,α是全局相位因子

Toffoli门(CCNOT门)

对于 CNOT 门另外一个推广的想法是,能不能实现两个门控制一个门?

定理3 任意幺正算符是可以开根号的,即对于任意幺正算符U,存在幺正算符V,使得V^{2}=U

分解Toffoli门,一个一个情况分析

以110输入为例子,经过第一个V变换,第三条线受控,经过CNOT门,第一条线输入1,第二条线发生反转,经过V^{+},第二条线输入为0,不发生作用,经过第二个CNOT,发翻转,第二条线变成0,最后第一条线控制第二V变换,即V^{2}=U,即得到了最终的效果U。(在做这些讨论时,始终要记住我们是对一个一般的量子态进行操作,也就是说上面这些情况是可以相干地同时发生的

综上,我们实现了预期的功能。当U取做翻转门X时,我们一般将其称为 Toffli 门。

推广后,由可三比特来控制电路

参考文献

1.量子算法:量子门电路 - 知乎 (zhihu.com)

2.布洛赫球 (Bloch Sphere) - 知乎 (zhihu.com)

3.单量子比特操控 - 知乎 (zhihu.com)

4.(美)Michael ANielsen(迈克尔A.尼尔森),Isaac L.Chuang(艾萨克 L.庄). 量子计算与量子信息 10周年版[M]. 北京:电子工业出版社, 2022.02.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白光白光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值