目录
量子比特
纯态|0>,|1>,通用单量子比特表示
|ψ>=α|0>+β|1>, (1)
|1>的概率为|β>方,|0>概率为|α>方。可以用布洛赫球来表示单量子比特,
可将(1)式子改写为,
其中定义了三维球上的一个点。测量会改变量子比特的状态,量子比特会发生坍塌,成为|0>或|1>态,所以只有在测量无数个量子比特后才能确定α和 β的值。
多量子比特
两量子比特|ψ>=|00>+|01>+|10>+|11>,测量到x=(00,01,10,11)的概率为,测量后量子比特变为|x>,对第一个量子比特测量得到|0>的概率为,并且测量后状态发生改变。
量子门电路
在进一步讨论这个问题之前,我先对一些基本的概念作一个简介。
如前所述,在谈论量子计算时,我们谈的是n个 qubit ,对其执行一系列算符操作,最后执行测量。如下图,我们常常画出横着并排的n条直线,从左到右代表着时间顺序,而不同的直线代表不同的 qubit ;在这些直线上排列着各种小方块大方块还有竖线,代表着各种不同的单 qubit 或多 qubit 幺正算符,每一个幺正算符(满足性质 )被称为一个(量子)门;人们常将一些简单的量子门组合成更复杂的量子门;整张图就被称为一个量子网络/量子电路。
人们给一些常用的量子门取了特定的名字,列举几个如下:
泡利X门
作用在单qubit上,用于0,1翻转,相当于经典中的非门,在布洛赫球上相当于 绕x轴旋转180度。
泡利Y门
对量子态施加 Y 门后,量子态在布洛赫球上的状态会绕 Y 轴旋转 180°。
泡利Z门
对量子态施加 Z 门后,量子态在布洛赫球上的状态会绕 Z 轴旋转 180°。
哈达玛门(Hadamard)——H门
H门通常用来将纯态qubit,转变为纠缠态
,
相位门(phase gate)——S门
相位门(S 门)是对量子态的相位进行旋转的门,它可以看作是泡利Z 门的一般化。S门只对|1>作用,相当于绕y轴旋转,,两个S门相当于一个Z门
相位因子i即
Π/8门(T门)
T 门,也称为 Π/8门,是一个相位旋转门,它将量子态的相位旋转 π/4,它是相位门的平方根门
受控非门——CNOT门
对于 2 个量子比特系统,CNOT门实现如下功能。
如果控制比特为 ∣0〉,目标比特保持不变
如果控制比特为 ∣1〉,目标比特的状态翻转(即 ∣0〉↔∣1〉)
例如,对于输入状态 ∣10〉,控制比特 ∣1〉,目标比特从 ∣0〉 翻转为 ∣1〉,输出为 ∣11〉
CNOT 门可以用于纠缠态的生成,例如生成贝尔态。
交换门(SWAP Gate)
交换门的作用就是交换两个量子比特的状态:
对输入状态 ∣ab〉其中 a 和 b 是 0 或 1),SWAP 门将其变为 ∣ba〉
例如,输入状态 ∣10〉通过 SWAP 门后,输出状态将是 ∣01〉
受控 Z 门(CZ Gate)
当控制比特为 ∣0〉时,目标比特不变。
当控制比特为 ∣1〉时,对目标比特施加 Z 门,使其相位翻转。
例如,对于输入状态 ∣11〉,CZ 门将输出状态 −∣11〉,即施加了一个相位翻转。
CZ 门常用于生成纠缠态(如 GHZ 态)。它与 CNOT 门等价于局部单比特旋转后的结果。
另外还有受控相位门,Toffoli门(Controlled-Controlled-NOT 门,双比特控制门),Fredkin门(Controlled-SWAP 门,受控交换门)。
组合电路
就讲讲toffoli门吧,原来自己一直没有弄清楚。
先引入一些问题/实现目标
获得一个有着足够打维度希尔伯特空间中的量子态ψ;
对其执行任意的幺正算符Uψ;
对整个过程测量以得到经典的结果;
对整个过程进行经典的循环与判断。
而我们已知:
将n个二态系统相干的放在一起,可以得到一个有维的量子系统;
如何对单个比特执行任意的幺正算符,以及少量比特执行一些简单的幺正演化;
在n-qubit系统上任意复杂的测量都可以分解成一系列幺正算符和单qubit上的测量的叠加;
经典计算机是成熟的。
分解定理
定理1(单量子比特的分解)任何2×2的酉矩阵都可以分解为
其中α,β,γ,δ为实数。
定理1的证明
既然U是幺正的,那么U的行向量和列向量是正交的,那么必然存在实数α,β,γ,δ满足
化简得
推论4.2 设U是作用于单比特的酉门,那么存在对于单比特的酉算符A,B,C,满足和
,α是全局相位因子
Toffoli门(CCNOT门)
对于 CNOT 门另外一个推广的想法是,能不能实现两个门控制一个门?
定理3 任意幺正算符是可以开根号的,即对于任意幺正算符U,存在幺正算符V,使得
分解Toffoli门,一个一个情况分析
以110输入为例子,经过第一个V变换,第三条线受控,经过CNOT门,第一条线输入1,第二条线发生反转,经过,第二条线输入为0,不发生作用,经过第二个CNOT,发翻转,第二条线变成0,最后第一条线控制第二V变换,即,即得到了最终的效果U。(在做这些讨论时,始终要记住我们是对一个一般的量子态进行操作,也就是说上面这些情况是可以相干地同时发生的)
综上,我们实现了预期的功能。当U取做翻转门X时,我们一般将其称为 Toffli 门。
推广后,由可三比特来控制电路
参考文献
2.布洛赫球 (Bloch Sphere) - 知乎 (zhihu.com)
4.(美)Michael ANielsen(迈克尔A.尼尔森),Isaac L.Chuang(艾萨克 L.庄). 量子计算与量子信息 10周年版[M]. 北京:电子工业出版社, 2022.02.