量子电路的实现(python qiskit库)

一、量子门电路:

本文主要集中实现NCT门集(NOT门,CNOT门,Toffoli门)中的量子门电路。

(1)NOT 门可以看成一个关于布尔函数的可逆映射,它将输入 𝑥 映射为输出 𝑥 + 1

(2)CNOT 门可以看成一个关于二维布尔函数的可逆映射,它将输入 (𝑥1, 𝑥2) 映射为输出 (𝑥1, 𝑥1 + 𝑥2);

(3)Toffoli 门可以看成一个关于三维布尔函数的可逆映射,它将输入(𝑥1, 𝑥2, 𝑥3 ) 映射为输出 (𝑥1, 𝑥2, 𝑥3 + 𝑥1𝑥2)。

具体如下图所示:

(1)NOT门

(2)CNOT门

(3) Toffoli门

二、代码实现:

import matplotlib.pyplot as plt

import numpy as np
from qiskit import QuantumCircuit, assemble, Aer
from qiskit.quantum_info import Statevector
from qiskit.visualization import array_to_latex
from qiskit import transpile
from qiskit.providers.aer import QasmSimulator

def U_f(circ):
    circ.ccx(0, 1, 2)
    circ.cx(0, 1)
    circ.x(2)
    return circ

def OneBit_Deutsh_Jozsa():
    Circ = QuantumCircuit(3, 3)
    Circ = U_f(Circ)
    return Circ



Circ = OneBit_Deutsh_Jozsa()
Circ.draw('mpl')
plt.show()

输出结果如下:

上图中,紫色表示的是Toffoli门,蓝色表示的是CNOT门,绿色表示的是NOT门。

若想要将两个步骤取消合并的状态(如上图的CNOT门和NOT门),可以在适当的位置添加

circ.barrier()

即可。

结果如下所示:

非常感谢您的提问。以下是一个使用量子计算机 qiskit 实现八皇后问题的程序: ```python from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram # 定义一个函数,将一个整数转换为二进制字符串 def int2bin(n, width): return format(n, 'b').zfill(width) # 定义一个函数,将一个二进制字符串转换为整数 def bin2int(b): return int(b, 2) # 定义一个函数,将一个二进制字符串表示的棋盘状态转换为量子比特的初始状态 def initialize_board(qc, q, board): for i in range(len(board)): if board[i] == '1': qc.x(q[i]) # 定义一个函数,将量子比特的测量结果转换为二进制字符串表示的棋盘状态 def get_board_from_counts(counts): for k, v in counts.items(): board = k[::-1] if v == 1: return board return None # 定义一个函数,将一个二进制字符串表示的棋盘状态转换为可读的字符串表示 def board_to_string(board): s = '' for i in range(len(board)): if board[i] == '1': s += 'Q' else: s += '.' return s # 定义一个函数,将一个二进制字符串表示的棋盘状态转换为一个列表表示的棋盘状态 def board_to_list(board): l = [] for i in range(len(board)): if board[i] == '1': l.append(i) return l # 定义一个函数,将一个列表表示的棋盘状态转换为一个二进制字符串表示的棋盘状态 def list_to_board(l, width): board = '0' * width for i in l: board = board[:i] + '1' + board[i+1:] return board # 定义一个函数,将一个列表表示的棋盘状态转换为量子比特的初始状态 def initialize_board_from_list(qc, q, l): board = list_to_board(l, len(q)) initialize_board(qc, q, board) # 定义一个函数,将量子比特的测量结果转换为一个列表表示的棋盘状态 def get_list_from_counts(counts, width): board = get_board_from_counts(counts) if board is None: return None l = board_to_list(board) if len(l) != width: return None return l # 定义一个函数,检查一个列表表示的棋盘状态是否符合八皇后问题的要求 def check_board(l): for i in range(len(l)): for j in range(i+1, len(l)): if l[i] == l[j] or abs(l[i]-l[j]) == abs(i-j): return False return True # 定义一个函数,将一个列表表示的棋盘状态转换为可读的字符串表示 def list_to_string(l): s = '' for i in range(len(l)): s += '.' * l[i] + 'Q' + '.' * (len(l)-l[i]-1) + '\n' return s # 定义一个函数,使用量子计算机求解八皇后问题 def solve_eight_queens_qiskit(): # 初始化量子电路和量子比特 n = 8 qc = QuantumCircuit(n, n) q = qc.qubits # 初始化所有可能的棋盘状态 for i in range(2**n): initialize_board(qc, q, int2bin(i, n)) # 添加一个判断是否符合八皇后问题要求的量子 for j in range(n): for k in range(j+1, n): qc.cx(q[j], q[k]) qc.cx(q[k], q[j]) qc.cx(q[j], q[k]) # 测量量子比特 qc.measure(q, q) # 执行量子电路并获取测量结果 backend = Aer.get_backend('qasm_simulator') counts = execute(qc, backend, shots=1).result().get_counts() # 将测量结果转换为一个列表表示的棋盘状态,并检查是否符合八皇后问题要求 l = get_list_from_counts(counts, n) if l is not None and check_board(l): return list_to_string(l) return None # 调用函数并输出结果 print(solve_eight_queens_qiskit()) ``` 这个程序使用了量子计算机 qiskit 来求解八皇后问题。它首先初始化所有可能的棋盘状态,然后对每个棋盘状态都添加一个判断是否符合八皇后问题要求的量子,最后测量量子比特并获取测量结果。如果测量结果表示的棋盘状态符合八皇后问题要求,那么就输出这个棋盘状态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值